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ABSTRACT
This work considers the problem of learning cooperative policies in
complex, partially observable domains without explicit communi-
cation. We extend three classes of single-agent deep reinforcement
learning algorithms based on policy gradient, temporal-difference
error, and actor-critic methods to cooperative multi-agent systems.
We introduce a set of cooperative control tasks that includes tasks
with discrete and continuous actions, as well as tasks that involve
hundreds of agents. The three approaches are evaluated against
each other using different neural architectures, training procedures,
and reward structures. Using deep reinforcement learning with a
curriculum learning scheme, our approach can solve problems that
were previously considered intractable by most multi-agent rein-
forcement learning algorithms. We show that policy gradient meth-
ods tend to outperform both temporal-difference and actor-critic
methods when using feed-forward neural architectures. We also
show that recurrent policies, while more difficult to train, outper-
form feed-forward policies on our evaluation tasks.

1. INTRODUCTION
Learning to cooperate between several interacting agents has

been well studied [39, 30, 6]. While the problem of cooperation
can be formulated as a decentralized partially observable Markov
decision process (Dec-POMDP), exact solutions are intractable [1,
5]. A number of approximation methods for solving Dec-POMDPs
have been developed recently that adapt techniques ranging from
reinforcement learning [3] to stochastic search [28]. However, ap-
plying these methods to real-world problems is challenging be-
cause they are typically limited to discrete actions and require care-
fully designed features.

On the other hand, recent work in single agent reinforcement
learning has enabled learning in domains that were previously
thought to be too challenging due to their large and complex obser-
vation spaces. This line of work combines ideas from deep learning
with earlier work on function approximation [40, 22], giving rise to
the field of deep reinforcement learning. Deep reinforcement learn-
ing has been successfully applied to complex real-world tasks that
range from playing Atari games [24] to robotic locomotion [20].
The recent success of the field leads to a natural question—how
well can ideas from deep reinforcement learning be applied to co-
operative multi-agent systems?

In this work, we focus on problems that can be modeled as Dec-
POMDPs. We extend three classes of deep reinforcement learn-
ing algorithms: temporal-difference learning using Deep Q Net-
works [24], policy gradient using Trust Region Policy Optimiza-
tion [33], and actor-critic using Deep Deterministic Policy Gra-
dients [21]. We compare their performance on three benchmark
tasks. The benchmark tasks were chosen to represent a diverse va-

riety of complex environments with discrete and continuous actions
and observations.

Our empirical evaluations show that using a decentralized pa-
rameter sharing neural network policy with an appropriate training
protocol and choice of reward function leads to emergent coopera-
tive behavior without explicit communication between agents. We
also show that the policy gradient method scales to large multi-
agent control tasks with dozens of agents required to complete col-
laborative tasks and hundreds of agents present in the environment.
To our knowledge, this work presents the first cooperative rein-
forcement learning algorithm that can successfully scale in contin-
uous action spaces. We call this algorithm PS-TRPO.

2. RELATED WORK
Multi-agent reinforcement learning has a rich literature [8, 30].

A number of algorithms involve value function based cooperative
learning. [39] compared the performance of cooperative agents to
independent agents in reinforcement learning settings. [29] iden-
tified modularity as a useful prior to simplify the application of
reinforcement learning methods to multiple agents. [13] later ex-
tended this idea and factored the joint value function into a linear
combination of local value functions and used message passing to
find the joint optimal actions. [19] tried distributing the value func-
tion into learning multiple tables but failed to scale to stochastic
environments.

On the other hand, policy search methods have found better suc-
cess in partially observable environments [34]. [32] studied gradi-
ent based distributed policy search methods. Our solution approach
can be considered a direct descendant of the techniques introduced
in their work. However, instead of using finite state machines, our
model uses deep neural networks to control the agents. This ap-
proach allows us to extend neural network controllers to tasks with
continuous actions, use deep reinforcement learning optimization
techniques, and consider more complex observation spaces.

Relatively little work on multi-agent reinforcement learning has
focused on continuous action domains. A few notable approaches
include those of [11] who focus on discretization and [37] who used
a normalized Gaussian Network as a function approximator to learn
continuous action policies. Many of these approaches only work in
fairly restricted settings and fail to scale to high dimensional raw
observations or continuous actions. Moreover, their computational
complexity grows exponentially with the number of agents.

Multi-agent control has also been studied in extensive detail from
the dynamical systems perspective in problems like formation con-
trol [10], coverage control [9], and consensus [27]. The limitations
of the dynamical systems approach lie in its requirement for hand-
engineered control laws and problem specific features. While the
approach allows for development of provable characteristics about



the controller, it requires extensive domain knowledge and hand
engineering. Overall, deep reinforcement learning provides a more
general way to solve multi-agent problems without the need for
hand-crafted features and heuristics by allowing the neural network
to learn those properties of the controller directly from raw obser-
vations and reward signals.

Recent research has applied deep reinforcement learning to
multi-agent problems. [38] extended the DQN framework to inde-
pendently train multiple agents. Specifically, they demonstrate how
collaborative and competitive behavior can arise with the appropri-
ate choice of reward structure in a two-player Pong game. More
recently, [12] and [36] train multiple agents to learn a communica-
tion protocol to solve tasks with shared utility. They demonstrate
end-to-end differentiable training using novel neural architectures.
However, these examples work with either relatively few agents or
simple observations and do not share our focus on decentralized
control problems with high dimensional observations and continu-
ous action spaces.

3. BACKGROUND
In this work, we consider multi-agent domains that are fully co-

operative and partially observable. All agents are attempting to
maximize the discounted sum of joint rewards. No single agent can
observe the state of the environment. Instead, each agent receives a
private observation that is correlated with that state. We assume the
agents cannot explicitly communicate and must learn cooperative
behavior only from their observations.

Formally, the problems considered in this work can
be modeled as Dec-POMDPs defined by the tuple
(I,S, {Ai}, {Zi} , T,R,O), where I is a finite set of agents, S
is a set of states, {Ai} is a set of actions for each agent i, {Zi} is
a set of observations for each agent i, and T , R, O are the joint
transition, reward, and observation models, respectively. In this
work, we consider problems where S, A, and Z can be infinite
to account for continuous domains. In the reinforcement learning
setting, we do not know T , R, or O, but instead have access to a
generative model. It is natural to also consider a centralized model
known as a multi-agent POMDP (MPOMDP), with joint action
and observation models. The centralized nature of MPOMDPs
makes them less effective at scaling to systems with many agents.

We briefly describe three single-agent deep reinforcement learn-
ing algorithms, including temporal-difference, actor-critic, and pol-
icy gradient approaches.

3.0.1 Deep Q-Network
The deep Q-network (DQN) algorithm [24] is a temporal-

difference method that uses a neural network to approximate the
state-action value function:

Q(s, a) = max
π

E [rt + γrt+1 + . . . | st = s, at = a, π]

DQN relies on an experience replay dataset Dt = {e1, . . . , et},
which stores the agent’s experiences et = (st, at, rt, st+1) to re-
duce correlations between observations. The experience consists
of the current state st, the action the agent took at, the reward it
received rt, and the state it transitioned to st+1. The learning up-
date at each iteration i uses a loss function based on the temporal-
difference update:

Li(θi) = E(s,a,r,s′)∼D[
(r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi))

2

]

where θi and θ−i are the parameters of the Q-networks and the
target network respectively at iteration i, and the experience sam-
ples (s, a, r, s′) are sampled uniformly from D. In partially ob-
servable domains where only observations ot are available at time
t instead of the entire state st, the experience takes the form
et = (ot, at, rt, ot+1). One of the limitations of DQN is that it
cannot easily handle continuous action spaces.

3.0.2 Deep Deterministic Policy Gradient
Deep deterministic policy gradient (DDPG) combines the actor-

critic and DQN approaches to learn policies in continuous action
spaces. The goal in DDPG is to maintain a parameterized actor
function µ(s | θµ), which deterministically maps states to actions
while learning a critic Q(s, a) that estimates the value of state-
action pairs. The actor can be updated with the following optimiza-
tion step:

∇θµJ ≈ Est∼ρπ [∇aQ(s, a | θQ)|s=st,a=µ(st)

∇θµµ(s | θµ)|s=st ]

where ρπ are transitions generated from a stochastic behavior pol-
icy π, typically represented with a Gaussian distribution centered
at µ(s | θµ).

3.0.3 Trust Region Policy Optimization
Trust region policy optimization (TRPO) [33] is a policy gradi-

ent method that allows precise control of the expected policy im-
provement during the optimization step. At each iteration k, TRPO
aims to solve the following constrained optimization problem by
optimizing the stochastic policy πθ:

Maximize
θ

Es∼ρθk ,a∼πθk

[
πθ(a|s)
πθk (a|s)Aθk (s, a)

]
subject to Es∼ρθk [DKL(πθk (·|s)‖πθ(·|s))] ≤ ∆KL

where ρθ = ρπθ are the discounted state-visitation frequencies in-
duced by πθ . Aθk (s, a) is the advantage function, which can be
estimated by the difference between the empirical returns and the
baseline. We use a linear value function baseline in our experi-
ments. DKL is the KL divergence between the two policy distribu-
tions, and ∆KL is a step size parameter that controls the maximum
change in policy per optimization step. The expectations in the ex-
pression can be evaluated using sample averages, and the policy
can be represented by non-linear function approximators such as
neural networks. The stochastic policy πθ can be represented by a
categorical distribution when the actions of the agent are discrete
and by a Gaussian distribution when the actions are continuous.
We also found it useful to supplement these ideas from single agent
reinforcement learning with reward transformations and curriculum
learning.

3.0.4 Reward Structure
There can be a benefit in assigning rewards to agents that does

not necessarily match the actual objective. The concept of re-
ward shaping [26] involves modifying rewards to accelerate learn-
ing without changing the optimal policy and approximate Bayesian
methods that add bonus reward to the objective reward to achieve
optimism under uncertainty [17, 35]. When modeling a multi-agent
system as a Dec-POMDP, rewards are shared jointly by all agents.
In a centralized representation, the reward signal cannot be decom-
posed into separate components, and is equivalent to the joint re-
ward in a Dec-POMDP. However, decentralized representations can
allow us an alternative local reward representation allowing us to



assign credit in a more fine-grained manner. Local rewards can re-
strict the reward signal to only those agents that are involved in the
success or failure at a task. [2] have shown that such local informa-
tion can help reduce the number of samples required for learning.
As we will note later, this decomposition can drastically improve
training time. The results are, however, still evaluated using the
global reward.

3.0.5 Curriculum Learning
Many reinforcement learning tasks are difficult to learn from

scratch. It is often easier to learn a simple task first, and then build
on that knowledge to solve the difficult task. This idea is known
as curriculum learning [4], and it can be extended to reinforcement
learning problems with multiple cooperating agents. Formally, a
curriculum T is an ordered set of tasks organized by increasing
difficulty. In cooperative multi-agent settings, the tasks in the cur-
riculum become more difficult as the number of cooperating agents
required to complete the task increases.

4. MULTI-AGENT
DEEP REINFORCEMENT LEARNING

This section presents three training schemes for reinforcement
learning that are applicable to multi-agent domains. We outline the
advantages and disadvantages of each approach, and describe how
each can be combined with deep reinforcement learning.

4.1 Centralized
The centralized learning approach assumes a joint model for the

actions and observations of all the agents. A centralized policy
maps the joint observation of all the agents to a joint action, and
is equivalent to an MPOMDP policy. A major drawback of this
approach is that it is centralized in both training and execution, and
leads to an exponential growth in the observation and actions spaces
with the number of agents. We address this intractability in part by
factoring the action space of centralized multi-agent systems.

We first assume that the joint action can be factored into individ-
ual components for each agent. The factored centralized controller
can then be represented as a set of independent sub-policies that
map the joint observation to an action for a single agent. In the
policy gradient approach this reduces to factoring the joint action
probability as P (~a) =

∏
i P (ai) where ai are the individual ac-

tions of an agent. In practice, this means that the output of our
neural network policy has to capture only the action distributions
for each individual agent rather than the joint action distributions
for all the agents. In systems with discrete actions, this reduces the
size of the action space from |A|n to n|A|, where n is the number
of agents and A is the action space for a single agent (we assume
homogeneous agents for simplicity). While this is a significant re-
duction in the size of the action space, the exponential growth in
the observation spaces ultimately makes centralized controllers im-
practical for complex cooperative tasks.

4.2 Concurrent
In concurrent learning, each agent learns its own individual pol-

icy. Concurrent policies map an agent’s private observation to an
action for that agent. Each agent’s policy is independent. In the
policy gradient approach, this means optimizing multiple policies
simultaneously from the joint reward signal. One of the advantages
of this approach is that it makes learning of heterogeneous policies
easier. This can be beneficial in domains where agents may need to
take on specific roles in order to coordinate and receive reward.

There are two major downsides to the concurrent training ap-
proach. First, training unique policies does not scale to large num-

Algorithm 1 PS-TRPO

Input: Initial policy parameters Θ0, trust region size ∆
for i← 0, 1, . . . do

Rollout trajectories for all agents ~τ ∼ πθi
Compute advantage values Aπθi (o

m,m, am) for each agent
m’s trajectory element.
Find πθi+1 maximizing Eq. (1)

subject to DKL(πθi‖πθi+1) ≤ ∆

bers of agents. Because the agents do not share experience with
each other, this approach adds additional sample complexity to the
reinforcement learning task. During training, the approach requires
a policy for each agent, which can add significant computational
and memory burdens when the policies are represented by complex
models like neural networks. Second, as the agents are learning
and adjusting their policies, the change in the policies make the en-
vironment dynamics non-stationary. This could lead to instability,
and is particularly problematic in deep reinforcement learning ap-
proaches based on experience replay. Stored experiences can be
quickly rendered obsolete due to the changing dynamics of other
agents.

4.3 Parameter Sharing
If the agents are homogeneous, their policies may be trained

more efficiently using parameter sharing. In the parameter shar-
ing approach, we allow all the agents to share the parameters of a
single policy. This allows the policy to be trained with the experi-
ences of all agents simultaneously. However, it still allows differ-
ent behavior between agents because each agent receives different
observations, which includes their respective index. In this work,
we focus on the decentralized parameter sharing training protocol
because we found it to be the most scalable approach out of the
three described in this section. In this protocol, the control is de-
centralized but the learning is not. In the remainder of the paper, all
training schemes are assumed to be parameter sharing unless stated
otherwise.

Algorithm 1 describes a policy gradient version of the parameter
sharing training approach based on single agent TRPO [33]. We
first initialize the policy network and set the step size parameter. At
each iteration of the algorithm, the decentralized policy is used to
sample trajectories from each agent. The batch of trajectories from
all the agents is used to compute the advantage value and maximize
the following objective:

L(θ) = Eo∼ρθk ,a∼πθk

[
πθ(a | o,m)

πθk (a | o,m)
Aθk (o,m, a)

]
(1)

where m is the agent index. The results of the optimization are
used to compute the parameter update for the policy. So long as the
agents can execute decentralized policies with shared parameters,
both DDPG and DQN can be extended to multi-agent systems in a
similar manner.

5. EXPERIMENTS
This section presents empirical results that compare the perfor-

mance of multi-agent extensions of TRPO, DDPG, and DQN in
cooperative settings. We present three tasks that aim to demon-
strate coordination in different domains including tasks with both
discrete and continuous control: pursuit-evasion, waterworld, and
coordinating bipedal walkers. For discrete action tasks, we com-
pare TRPO to DQN, and for continuous action tasks we compare
TRPO to DDPG. For the policy gradient approach, we examine a
few neural network architectures including feed-forward MLP and



(a) Pursuit (b) Waterworld (c) Multi-Walker

Figure 1: Examples of three cooperative domains.

CNN for reactive policies and GRU for recurrent policies. We also
examine the effects of centralized, concurrent, and decentralized
training schemes as well as two reward mechanisms that are rel-
evant to multi-agent domains. The results are compared against
each other and against a heuristic hand-crafted baseline for each
task. We also compare the performance of PS-TRPO to a tradi-
tional Dec-POMDP dynamic programming approach on a small,
discrete problem.

We consider three types of neural network architectures in this
work — fully connected, recurrent, and convolutional. With policy
gradients, for both discrete and continuous control tasks we use a
fully connected multi-layer perceptron (MLP) network with three
hidden layers consisting of 100, 50, and 25 hidden units with tanh
nonlinearities. For discrete tasks, the network outputs a categori-
cal distribution over actions while for continuous tasks, it outputs
the mean of the Gaussian distribution. We also consider recurrent
neural networks with 32 gated recurrent units (GRU). Although re-
current policies are more difficult to train than MLP policies, they
improve performance in partially observable domains by learning a
hidden state vector that represents information about the history of
observations seen by the agent. We also use the MLP network de-
scribed above as an observation feature extractor. These extracted
features are then passed into the GRU network. For tasks with ob-
servations that can be represented with spatially correlated images,
we also show the use of convolutional neural networks (CNNs).

The DDPG and DQN benchmarks train a deterministic policy
represented by a feed-forward network with two hidden layers, con-
sisting of 400 and 300 hidden units with rectified linear units as
activations. In the case of DDPG, the same network architecture is
used for the policy and the state-action value function.

In all our experiments, we use the discount factor γ = 0.99.
For PS-TRPO, we set the step size parameter to ∆ = 0.01, and
constrain the size of each batch to a maximum of 24000 time-steps.
For DDPG and DQN, we used batch sizes of 32, learning rate of
1 × 10−3 for the state-action value function and 1 × 10−4 for the
policy network.

5.1 Discrete Control Task
Pursuit is a standard task for benchmarking multi-agent algo-

rithms [41]. The pursuit-evasion domain consists of two sets of
agents: evaders and pursuers. The evaders are trying to avoid pur-
suers, while the pursuers are trying to catch the evaders. The action
and observation spaces in this problem are discrete. The agents
interact on a two-dimensional grid, and an evader is considered
caught if it is surrounded by pursuers on four sides. In order to
catch the evaders, the pursuers must learn to cooperate by trapping
the evaders on all sides. When the pursuers catch an evader, they
receive a reward. This reward was set to 5. We also needed a shap-
ing reward of 0.01 for encountering an evader to ease exploration.
For simplicity, the evaders follow a uniform random policy. The
domain contains obstacles through which the agents cannot pass.

Each pursuer receives a range-limited observation of its surround-
ings, and must choose between five actions Stay, Go East, Go West,
Go South, Go North. The observations contain information about
the agent’s surroundings, including the location of nearby pursuers,
evaders, and obstacles. The example in Fig. 1a shows a 32×32 grid
world with randomly generated obstacles, 20 pursuers (denoted by
red stars), and 20 evaders (denoted by blue stars). The square box
surrounding the pursuers indicates their observation range.

We first compared the performance of the three training schemes
with a feed-forward MLP policy using TRPO as the policy gradi-
ent approach. The results are shown in Fig. 2a for a 16 × 16 grid,
8 pursuers with an observation range of 7, and 30 evaders. While
only 4 cooperating agents are needed to complete the task, our pol-
icy learns to break up the pursuers into teams of 4 when there are
more than 4 pursuers interacting with each other. The plot shows
the returns from the heuristic policy which serves as a baseline for
our experiments. The heuristic policy moves the pursuer towards
the closest evader if they are within observation range, otherwise it
selects a random action. From Fig. 2a, it is clear that for a policy
parameterized by an MLP, decentralized and concurrent training
do better than centralized. Because the observation is image-like
(see Fig. 5) with spatial correlations present in each observation
dimension, we can leverage the ability of convolutional neural net-
works to better capture these correlations. In the pursuit task, the
CNN policy tends to outperform the MLP policy. We also com-
pared this behavior with a GRU network parameterized policy and
found a similar trend. Decentralized training consistently outper-
formed centralized training. Visualizations also showed consistent
attempts by the agents to herd together the evaders in a coordinated
manner.

We then compared the training behavior of global and local re-
wards. We found that using local rewards consistently improved
convergence during training. An example of this difference for the
pursuit evasion problem is shown in Fig. 4.

We compared the behavior of DQN against our policy gradient
approach PS-TRPO. As can be seen from Fig. 3, DQN does not
perform as well as the policy gradient based PS-TRPO. We hypoth-
esize that an important factor in DQN’s inability to learn a good
controller in the decentralized setting is the non-stationarity of the
problem.

5.2 Comparison to Traditional Method
Traditional reinforcement learning and Dec-POMDP approaches

find it difficult to handle problems with continuous action spaces
and scale to problems with large numbers of agents. We compare
the performance of PS-TRPO against a traditional approach for
solving Dec-POMDPs based on Joint Equilibrium search for poli-
cies (JESP) [25] on a small-scale pursuit problem. The approach
we use as comparison resembles JESP in that it finds a policy that
maximizes the joint expected reward for one agent at a time, while
keeping the policies of all the other agents fixed. The process is
repeated until an equilibrium is reached. In our approach, we use
the fast informed bound (FIB) algorithm [14] to perform the policy
optimization of a single agent.

The pursuit problem is set on a 5 × 5 grid with a square ob-
struction in the middle. There is a single evader and two pursuers.
Both of the pursuers must occupy the same location as the evader
in order to catch it and obtain a reward. This problem has a total of

Table 1: Average returns on small-scale pursuit problem

PS-TRPO FIB
Average Returns 9.36± 0.52 9.29± 0.65
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Figure 2: Normalized average returns for multi-agent policies. A random policy has zero normalized average return. Error bars represent
standard error. Results from Wilcoxon test suggest that these differences are significant (p < 0.05) except for the difference between
centralized GRU and decentralized GRU for the waterworld domain.
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Figure 3: Average returns comparing PS-TRPO and DQN/DDPG
in Pursuit and Multi-Walker Domains.

15625 states and 729 observations. The results comparing the av-
erage performance and their standard errors of PS-TRPO and FIB
policies averaged over 100 simulations are shown in Table 1. The
results demonstrate that PS-TRPO performs as well as the tradi-
tional approaches on the small problem, and has the ability to scale
to large and continuous spaces.

5.3 Continuous Control Tasks
We next evaluated the algorithm’s performance on continuous

control tasks. First, we extended the above mentioned pursuit-
evasion problem to a continuous domain. The extension is based
on the single agent waterworld domain used by [15] . In this
task, agents need to cooperate to capture moving food targets while
avoiding poison targets. Both the observation and action spaces
are continuous, and the agents move around by applying a two-
dimensional force. Each agent has 30 range-limited sensors fac-
ing outward with uniform angular spacing. The sensors are used to

make distance and velocity measurements of other agents, food tar-
gets and poison targets, resulting in a 212-dimensional observation
for each agent. The agents receive a reward each time they collab-
orate to capture a food target, and are penalized when they collide
with a poison target. They also receive an action penalty defined
as the square norm of the force applied. In our experiments, the
food reward was set to 10 and the poison penalty was −1. We also
added a reward of 0.01 for encountering the food targets to ease
exploration.

We used policy gradients to compare the proposed training
schemes and found that decentralized and concurrent approaches
outperformed centralized training for continuous tasks as well
(Fig. 2b). The policies were trained in environments with 16
agents, where at least 8 agents need to cooperate to catch a food
target. The waterworld heuristic policy moves the agents towards
a food target or an ally and away from the poison target. We
also found that a reactive policy performed better than a recurrent
one. We believe this is caused by the difficulty of training recur-
rent networks compared to simpler feedforward ones with high-
dimensional observations.

Finally, we tested our algorithm on a more difficult continuous
control locomotion task that is based on the BipedalWalker envi-
ronment from OpenAI gym [7]. The domain consists of multiple
bipedal walkers that can actuate the joints in each of their legs.
At the start of each simulation, a package is placed on top of the
walkers. The package is large enough that it stretches across all
of the walkers, and is too large for a single walker to move on its
own. The walkers must learn how to move forward and to coordi-
nate with other agents in order to keep the package balanced while
navigating a complex terrain. An example environment with five
walkers is shown in Fig. 1c.

The multi-walker domain also consists of continuous observa-
tion and action spaces. The walkers control torques in the two
joints on each of their legs for a total of 4 action variables. Each
walker receives noisy lidar measurements of the terrain as well as
displacement information about its two neighboring walkers and
the package for a total of 32 observation variables. The agents are
rewarded for moving the package forward, and are penalized when
the package touches the ground. An episode ends when the walk-
ers reach the edge of the terrain or when the package touches the
ground. In our experiments, dropping the package had a penalty of
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−100 while moving forward had a reward of 1.
We set the number of agents in the environment to 3 and use

TRPO to learn stochastic policies parameterized by either MLP or
GRU with different training schemes (see Fig. 2c). Our experi-
ments again confirmed that decentralized and concurrent schemes
outperform the centralized training scheme. We see a remarkable
improvement in performance between the GRU and MLP policy
using the decentralized behavior, indicating that taking the observa-
tion history into account is important in the multi-walker domain.
Visualizing the policies showed consistent intelligent behavior in
the agents coordinating and pushing the box forward without let-
ting it fall down.

We also compared DDPG against our PS-TRPO approach and
again found that PS-TRPO based on policy gradient worked better

Obstacles
Pursuers
Evaders

Figure 5: Image like representation of an observation in the pursuit
evasion domain. The locations of each entity (pursuers, evaders,
and obstacles) are represented as bitmaps in their respective chan-
nels.
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than DDPG, as can be seen in Fig. 3.

5.4 Scaling
We next studied how well the decentralized method scales to

larger observation spaces and many agents.
For the discrete pursuit-evasion problem, we first test PS-TRPO

on a large 128 × 128 environment with 200 pursuers and evaders
with at least 16 agents required to capture an evader. While a large
number of agents are present in the environment, only 16 of them
need to cooperate to achieve the capture task. Each observation is a
four channel 21×21 image, making the observation space 1764 di-
mensional. To test the behavior when a large number of agents need
to cooperate, we modified the task so that agents receive a reward
when the cooperating agents all occupy the same cell to capture
an evader. However, we found the reactive policy learned with an
MLP representation to be unsatisfactory. Therefore, to leverage the
ability of a convolutional neural network to capture spatial locality
in the input space, we represent the local observations of an agent
as an image with nearby pursuers, evaders, and obstacles presented
as different channels in the image. As can be seen in Fig. 6, this
representation allows us to scale our method to a fairly large num-
ber of cooperating agents and results in intelligent behavior.

We also studied how the performance of cooperative policies
scales with increasing number of agents for different training
schemes. Figure 7 shows the degrading performance of PS-TRPO



Algorithm 2 Curriculum Training

Input: Curriculum T , Iteration n, Policy πΘ, rthreshold

αT ← [length(T ), 1, 1, . . .]
while rmin < rthreshold do

{Sample task from the task distribution.}
w ∼ Dirichlet(αT )
i ∼ Categorical(w)
{Apply optimization step for a few iterations.}
PS-TRPO (Ti, πθ, n)
{ecurr is the task with the highest weight αT .}
recurr ← Evaluate(πθ, ecurr)
if recurr > rthreshold then

Circular shift αT weights to the next task
{Find the minimum average reward across tasks.}
rmin ← minT ErT

policies as the number of agents increases. The decreases in perfor-
mance are in part due to the increasing difficulty of the reinforce-
ment learning task as the number of cooperating agents grows.

We investigated how a curriculum learning scheme can help
scale the multi-walker problem in the number of agents. An in-
tuitive curriculum for this problem is over the number of agents,
and so we define a curriculum with the number of agents in the
environment ranging from 2 to 10. Because the policies are decen-
tralized, they can be evaluated on tasks with any number of cooper-
ating agents regardless of the number of cooperating agents present
during training. Unfortunately, we found that decentralized policies
trained on a few agents often fails to generalize to larger numbers
of agents. We therefore define a Dirichlet distribution for this range
of tasks with higher probability assigned to the simplest task (with
2 agents). We then sample an environment from this distribution
over the tasks in the curriculum and optimize the policy with PS-
TRPO for a few iterations. Once the expected reward for the most
likely environment reaches a threshold, we change the distribution
such that the next environment is most likely. We continue this
curriculum until the expected reward in all environments reaches
the defined threshold. Algorithm 2 describes this process. As can
be seen in Fig. 7, the resulting policy outperforms policies trained
without the curriculum. We believe this improvement in perfor-
mance is due to two reasons: a) The distribution over environments
provides a regularization effect, helping avoid local minima during
optimization, and b) It partially addresses the exploration problem
by smoothly increasing the difficulty of the policy to be learned.

One potential issue with this experiment is that the curriculum
scheme observed more episodes than the ones without curriculum.
However, we believe that it’s still an improvement because we do
see convergence, albeit to a worse optima, while learning without
curriculum as well.

6. CONCLUSION
Despite the advances in decentralized control and reinforcement

learning over recent years, learning cooperative policies in multi-
agent systems remains a challenge. The difficulties lie in scalabil-
ity to high-dimensional observation spaces and to large numbers of
agents, accommodating partial observability, and handling contin-
uous action spaces. In this work, we extended three deep reinforce-
ment learning algorithms to the cooperative multi-agent context,
and applied them to three high-dimensional, partially observable
domains with many agents.

Our empirical evaluations show that PS-TRPO policies have sub-
stantially better performance than DQN and DDPG in collaborative
multi-agent domains. We suspect that DQN and DDPG perform

poorly in systems with multiple learners due to the non-stationarity
of the system dynamics caused by the changing policies of the
agents. The non-stationary nature of the system makes experience
replay samples obsolete and negatively impacts training. One po-
tential way to address this problem is by disabling experience re-
play and instead relying on asynchronous training [23]. A more
detailed investigation is left for future work. Finally, we presented
empirical results on three multi-agent learning problems, demon-
strating that PS-TRPO can scale to systems with large numbers of
agents and perform well in domains with continuous action spaces.

There are several areas for future work. To improve scalabil-
ity of the proposed approach for larger numbers of cooperating
agents further work is needed. Two major challenges in multi-agent
systems are accommodating reward sparsity through intelligent do-
main exploration and incorporating high-level task abstractions and
hierarchy [31]. These are acute forms of similar challenges in
the single agent learning. Recently, curiosity based information
gain maximizing exploration strategy was explored by [16]. Sim-
ilar ideas could be adapted to maximize information gain not only
about the environment’s dynamics, but the dynamics of an agent’s
behavior as well. Correspondingly, hierarchical value functions
were integrated with deep reinforcement learning [18]. Incorpo-
rating task hierarchies in a multi-agent system would allow us to
tackle learning specialization and heterogeneous behavior.

The source code for this work can be found at
https://github.com/sisl/MADRL.
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