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ABSTRACT

Pandemic influenza has the epidemiological potential to kill
millions of people. While different preventive measures ex-
ist, it remains challenging to implement them in an effec-
tive and efficient way. To improve preventive strategies, it
is necessary to thoroughly understand their impact on the
complex dynamics of influenza epidemics. To this end, epi-
demiological models provide an essential tool to evaluate
such strategies in silico. Epidemiological models are fre-
quently used to assist the decision making concerning the
mitigation of ongoing epidemics. Therefore, rapidly identi-
fying the most promising preventive strategies is crucial to
adequately inform public health officials. To this end, we
formulate the evaluation of prevention strategies as a multi-
armed bandit problem. The utility of this novel evaluation
method is validated through experiments in the context of
an individual-based influenza model.

We demonstrate that it is possible to identify the optimal
strategy using only a limited number of model evaluations,
even if there is a large number of preventive strategies to
consider.

CCS Concepts

eTheory of computation - Reinforcement learning;
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1. INTRODUCTION

The influenza virus is responsible for the deaths of half
a million people each year [38]. Additionally, seasonal in-
fluenza epidemics cause a significant economic burden [30].
While influenza is typically confined to local epidemics, it
is possible for influenza to cause a pandemic when a novel
strain emerges that spreads easily among human hosts world-
wide [31]. Pandemic influenza occurs less frequently than
seasonal influenza but the outcome with respect to mor-
bidity and mortality can be much more severe, potentially
killing millions of people worldwide [33]. Therefore, it is
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essential to study mitigation policies to control pandemic
influenza epidemics.

For influenza, different preventive measures exist: i.a.,
vaccination, social measures (e.g., school closures) and an-
tiviral drugs. However, the efficiency of these measures
greatly depends on their availability, as well as on epidemio-
logical characteristics. Furthermore, governments typically
have limited resources to implement such measures. There-
fore, it remains challenging to formulate prevention strate-
gies that make effective and efficient use of these preventive
measures while putting as little strain on the available re-
sources as possible. To improve the development of preven-
tive strategies, it is necessary to thoroughly understand the
complex dynamics of influenza epidemics. To this end, epi-
demiological models are commonly used. Such models study
the effects of preventive measures in silico [5, 18].

Epidemiological models are frequently used to assist the
decision making concerning the mitigation of ongoing epi-
demics (not only for influenza, e.g., the HIN1/09 influenza
pandemic [42], but also the 2014-2016 Ebola epidemic [2],
the 2016 yellow fever outbreak [24], etc.). Therefore, rapidly
identifying the most promising preventive strategies is cru-
cial. This however, can be at odds with the accuracy of the
models.

There are two main types of epidemiological models that
are frequently applied: compartment models, which divide
the population into discrete homogeneous states (i.e., com-
partments) and describe the transition rates from one state
to another, and individual-based models that explicitly rep-
resent all individuals and their connections, and simulate
the spread of a pathogen among these individuals. While
individual-based models are usually associated with a greater
model complexity and computational cost than compart-
ment models, they allow for a more accurate evaluation of
preventive strategies [9, 14, 28]. It is therefore highly prefer-
able to use individual-based models whenever computational
resource constraints permit. In order to make it feasible to
use individual-based models, it is essential to use the avail-
able computational resources as efficiently as possible.

The outcome of the simulation of a preventive strategy
in a stochastic individual-based model, is a sample of that
strategy’s outcome distribution. In the literature, a set of
possible prevention strategies is typically evaluated by sim-
ulating each of the strategies a predefined number of times
(e.g., [16]). However, this can allocate a large proportion



of computational resources to explore the effects of highly
sub-optimal strategies.

We therefore propose to apply reinforcement learning [39]
with multi-armed bandits [3]. Reinforcement learning is the
study of how to balance exploitation (i.e., further simulat-
ing the effects of what we believe to be the best preventive
strategy to obtain more accurate results) and exploration
(i.e., simulating the effects of other strategies to see whether
they might actually be better than our current best). By
using this framework, we aim to reduce the number of re-
quired model evaluations to determine the most promising
preventive strategies. This reduces the total time required
to study a given set of prevention strategies, making the
use of individual-based models attainable in studies where
it would otherwise not be computationally feasible. Addi-
tionally, faster evaluation can also free up computational re-
sources in studies that already use individual-based models,
capacitating researchers to explore different model scenar-
ios. Considering a wider range of scenarios increases the
confidence about the overall utility of prevention strategies.

In this paper, we formulate the evaluation of preventive
strategies as a multi-armed bandit learning problem in sec-
tion 3. The utility of this new method is confirmed through
experiments in the context of pandemic influenza in sec-
tion 4, using the popular FIuTE individual-based model [9].
Our results show that we can quickly focus our computa-
tional resources on the optimal prevention strategy. We thus
conclude that our method has the potential to be used as a
decision support tool for mitigating influenza epidemics.

2. BACKGROUND

This section provides background on the application do-
main (i.e., finding mitigation strategies for pandemic in-
fluenza using epidemiological models) and learning methods
(i.e., multi-armed bandits) approached in this study.

2.1 Pandemic influenza

Influenza is an infectious disease caused by the influenza
virus. The primary prevention strategy to mitigate seasonal
influenza is to produce vaccine prior to the epidemic, antici-
pating the virus strains that are expected to circulate. This
vaccine pool is used to inoculate the population before the
start of the epidemic. While seasonal influenza is usually
limited to local epidemics, influenza can become pandemic
when a novel virus emerges that is able to spread easily
among human hosts worldwide [31]. Pandemic influenza oc-
curs much less frequently than seasonal influenza (i.e., there
were only 3 established pandemics in the 20*" century) but
the outcome with respect to morbidity and mortality can
be much more severe, potentially killing millions of people
worldwide [33]. As influenza viruses are constantly evolv-
ing, the stockpiling of vaccine to prepare for a pandemic is
not possible, as the vaccine should be specifically tailored
to the virus that is the source of the pandemic [32]. There-
fore, before an appropriate vaccine can be developed, the
responsible virus needs to be identified [32]. Hence, vac-
cine will be available only in limited supply at the begin-
ning of the pandemic [32]. Additionally, vaccine shortage
can be induced by problems with vaccine production (e.g.,
the vaccine contamination in the United States in 2004-2005
[13]). While pandemic influenza has been studied and mod-
eled extensively, there are still many aspects with respect to
mitigation strategies that remain to be investigated [6, 16].

Furthermore, awareness was raised recently about certain
parameters and assumptions used in epidemiological mod-
els to be too conservative to explore the full epidemiological
potential of pandemic influenza, and as a result evaluate
mitigation strategies overly optimistic [29]. These concerns
indicate that the reevaluation of preventive strategies, tak-
ing into account more realistic assumptions, is warranted.

The severity of pandemic influenza, the limited availabil-
ity of vaccine and an extensive set of open research questions
renders this field a primary target to evaluate preventive
strategies more efficiently.

2.2 Epidemiological models

Epidemiological models are an indispensable tool to in-
vestigate how pathogens spread through a population and
to evaluate mitigation strategies. Epidemiological models
are therefore crucial tools to assist policy makers with their
decisions [17, 25]. Modeling epidemiological processes can
be approached by means of individual-based models or com-
partment models. Compartment models divide the popula-
tion into discrete homogeneous states (i.e., compartments)
and describe the transition rates from one state to another.
Compartment models can be formulated as differential equa-
tions and thus form a mathematical framework to model epi-
demics. Individual-based models, on the other hand, explic-
itly represent all individuals and their connections and sim-
ulate the spread of a pathogen among this network of indi-
viduals. Individual attributes influence the way the contact
network evolves temporally and spatially. Additionally, the
infection progress and the different stages associated with
this progress is modeled per individual. Individual-based
models allow to evaluate therapeutic and preventive inter-
ventions on the level of individuals. Compartment models
generalize on population level and represent the expectation
of epidemiological outcomes, while individual-based models
are capable to represent individual heterogeneity. Modeling
a greater level of heterogeneity is usually associated with a
greater model complexity and computational cost, but al-
lows for a more accurate evaluation of preventive strategies
[9, 14, 28, 35, 41]. The result of a model evaluation is re-
ferred to as the model outcome. The relevant model out-
comes greatly depend on the policy makers’ research ques-
tions (e.g., prevalence, proportion of symptomatic individu-
als, morbidity, mortality, cost).

2.3 Modeling influenza

There is a long tradition to use individual-based models
to study influenza epidemics [5, 18, 16], since it allows for a
more accurate evaluation of preventive strategies. A main
example is FIuTE [9], an influenza individual-based model
that has been the driver for many high impact research ef-
forts over the last decade [5, 18, 21]. FIuTE implements a
contact model where the population is divided into commu-
nities of households [9]. The population is thus organized
in a hierarchy of social mixing groups where the contact in-
tensity is inversely proportional with the size of the group
(e.g., closer contact between members of a household than
between colleagues). FIuTE also supports worker’s com-
mute and the travel of individuals, both model components
that can be parameterized from census data. FluTE’s con-
tact network can be informed by population census data,
and geographical regions as large as the United States can
be modeled [9]. Next to the social mixing model, FIuTE



implements an individual disease progression model, where
different disease stages are associated with different levels
of infectiousness. To support the evaluation of prevention
strategies, FIuTE allows the simulation of both therapeutic
interventions (i.e., vaccines, antiviral compounds) and non-
therapeutic interventions (i.e., school closure, case isolation,
household quarantine). FIuTE is a highly customizable sim-
ulator in which all model components can be configured in
great detail.

2.4 Multi-armed bandit

The multi-armed bandit problem [22] concerns a k-armed
bandit (i.e., a slot machine with k levers) where each arm
A; returns a reward r; when it is pulled. As each arm re-
turns rewards according to a particular reward distribution,
a gambler wants to play a sequence of arms to maximize
her/his reward. A strategy to play such a sequence of arms
is called a policy. Such policies need to carefully balance
between exploitation (i.e., choose the arms with the high-
est expected reward) and exploration (i.e., explore the other
arms to potentially identify even more promising arms).
Multi-armed bandits have been proven useful to model many
empirical cases: i.a., the organization of clinical trials such
that patient mortality is minimized [34], resource alloca-
tion among competing stakeholders [19], adaptive routing
[4], A/B testing [23] and automated auctioning [7].

The simplest policy that attempts to balance the exploita-
tion/exploration trade-off is the e-greedy policy [39], this
policy selects the greedy arm (i.e., the arm with the high-
est expected reward) with probability 1 — ¢ and explores
the non-greedy arms with probability €. Another popular
policy is UCBL1 (i.e., Upper Confidence Bound) [3]. UCB1
considers the uncertainty of each arms’ value (i.e., the un-
certainty of the expected reward) by selecting the arm with
the highest upper confidence bound. The upper confidence
cln(n)
n

bound for an arm A; is computed as &; + = where z;
k3

is the sample average of A;, n; is the number of times A; was
played and n is the overall number of plays [3]. The second
term is an exploratory term, which decreases when arm A;
is being pulled sufficiently. This promotes the exploration of
arms for which the estimated expected reward is uncertain.

3. METHODS

To optimize the evaluation of prevention strategies, it
is important to identify the best strategy using a minimal
amount of model evaluations. Therefore, we propose to for-
mulate the evaluation of prevention strategies as a multi-
armed bandit problem. The presented method is generic
with respect to the kind of epidemic that is modeled (i.e.,

pathogen, contact network, preventive strategies). The method

is evaluated in the context of pandemic influenza in the next
section.

3.1 Preventive bandits

Definition 1. A multi-armed bandit problem [3] consists
of n = |{Ao, ..., An}| arms and a (time-independent) reward
distribution P(r|A;,0;) for each arm, where 6; are the pa-
rameters of the distribution. At each time step, ¢, an agent
(i.e., gambler) chooses and plays an arm A;, and receives a
reward, r; sampled (independently) from P(r|A;,60;). The
reward distributions’ parameters are unknown to the agent.

The goal in a multi-armed bandit is to optimize the cu-
mulative sum of rewards. In order to do so, it must select
arms that exploit its current knowledge about 6;, i.e., by
picking the best arm it has seen so far. However, it must
also explore, in order to discover arms that are better. Be-
cause the rewards are received stochastically, the agent must
never exclude the possibility that its current estimates are
wrong.

In our setting, we want to find the optimal preventive
strategy from a set of strategies by evaluating the strategies
in an epidemiological model.

Definition 2. A stochastic epidemiological model E is a
function C x P — R where: ¢ € C is a configuration, p € P
is a preventive strategy and the codomain R represents the
model outcome distribution.

Note that a model configuration ¢ € C describes the entire
model environment. This means both aspects inherent to
the model (e.g., FIuTE’s mixing model) and options that
the modeler can provide (e.g., population statistics, vaccine
properties, basic reproduction number).

Our objective is to find the optimal preventive strategy
from a set of alternative preventive strategies {po,...,pn} C
P for a particular configuration c¢g € C (corresponding to
the studied epidemic) of a stochastic epidemiological model.
To this end, we define a preventive bandit.

Definition 8. A preventive bandit has n = |{po, ..., n}|
arms. Playing arm p; corresponds to evaluating E(co,p:)
by running a simulation in the epidemiological model. Eval-
uating E(co,p;) results in a sample of the model outcome
distribution: oc. The reward of p; is a mapping of oc (i.e., a
sample of the model outcome distribution) using a mapping
function R — R.!

A preventive bandit is thus a multi-armed bandit, in which
the arms are preventive strategies, and the reward distri-
bution is implemented by an instance of a stochastic epi-
demiological model E(co,p;). We note that while the pa-
rameters of the reward distribution are in fact known, it
is intractable to determine the optimal reward analytically
from the stochastic epidemiological model.

Formulating the evaluation of preventive strategies in terms
of a bandit problem provides us with a new framework to
reason about this task. The goal is to determine the best
preventive strategy (i.e., bandit arm) using as little model
evaluations as possible (i.e., a best-arm identification prob-
lem).

3.2 Identifying the optimal strategy

Our goal is to identify the optimal strategy for a particu-
lar configuration ¢o € C (i.e., to identify the best arm) while
thoroughly exploring all preventive strategies. For this pur-
pose, we explore the use of the popular e—greedy and UCB1
algorithms.

4. EXPERIMENTS

Two experiments were composed and performed in the
context of pandemic influenza modeling. More specifically,
in these experiments we analyze the mitigation strategy to

!The mapping function allows the model outcome to be rep-
resented more conveniently for learning.



vaccinate a population when only a limited number of vac-
cine doses is available (details about this scenario in sec-
tion 2). The experiments are inspired by the work of Med-
lock [27].

When the number of vaccine doses is limited, it is imper-
ative to identify an optimal vaccine allocation strategy [27].
In our experiments, we explore the allocation of vaccines
over five different age groups: pre-school children, school-
age children, young adults, older adults and the elderly.

The experiments share a base model configuration, but
differ with respect to a key epidemiological parameter: the
basic reproduction number (i.e., Rg). The basic reproduc-
tion number represents the number of infections that is, by
average, generated by one single infection.

4.1 Influenza model and configuration

The epidemiological model used in the experiments is the
FIuTE stochastic individual-based model (for details please
refer to Appendix A). FIuTE comes with a set of sample
populations, in this experiment we use the sample popula-
tion that describes a single community consisting of 2000
individuals (for details please refer to Appendix A). At the
first day of the simulated epidemic, 10 random individuals
are infected (i.e., 10 infections are seeded). The epidemic is
simulated for 180 days. During this time no more infections
are seeded. Thus, all new infections established during the
run time of the simulation, result from the mixing between
infectious and susceptible individuals. We assume no pre-
existing immunity towards the circulating virus variant. We
assume there are 100 vaccine doses to allocate (i.e., vaccine
for 5% of the population).

In this experiment, we explore the efficacy of different
vaccine allocation strategies. We consider that only one
vaccine variant is available in the simulation environment.
FIuTE allows vaccine efficacy to be configured on 3 levels:
efficacy to protect against infection when an individual is
susceptible (i.e., V Esys), efficacy to avoid an infected indi-
vidual from becoming infectious (i.e., V Er,y) and efficacy
to avoid an infected individual from becoming symptomatic
(i.e., VEgsym). In our experiment we consider V Egys = 0.5
[26], VEr.y = 0.5 [26] and V Esym = 0.67 [42]. The in-
fluenza vaccine, as most vaccines, only becomes fully effec-
tive after a certain period upon its administration, and the
effectiveness increases gradually over this period [1]. In our
experiment, we assume the vaccine effectiveness to build up
linearly over a period of 2 weeks [1, 8].

We define two experiments: both experiments use the base
model configuration as described above. The two experi-
ments differ with respect to their Ry (i.e., basic reproduction
number) parameter. To evaluate our new method, we select
2 values that are used in many studies: Ro = {1.3,1.4} [5, 9,
27]. Each experiment thus has its own configuration. With
respect to the definition of the epidemiological model (i.e.,
E =C x P — R), we can express these configurations as
CRo=1.3 and cry=1.4 € C.

4.2 Formulating vaccine allocation strategies

We consider 5 age groups to which vaccine doses can be
allocated: pre-school children (i.e., 0-4 years old), school-
age children (i.e., 5-18 years old), young adults (i.e., 19-29
years old), older adults (i.e., 30-64 years old) and the elderly
(> 65 years old). An allocation scheme can be encoded by
a Boolean 5-tuple, where each position in the tuple corre-

sponds to the respective age group. When the value is 1 at
a position, this denotes that vaccines should be allocated to
the respective age group. When the value is 0 at a position,
this denotes that vaccines should not be allocated to the re-
spective age group. When vaccine is to be allocated to a
particular age group, this is done proportional to the size of
the population that is part of this age group.

Some examples: a preventive strategy where no vaccine
should be allocated is encoded as (0,0,0,0,0), a preven-
tive strategy where vaccine needs to be allocated uniformly
across all age groups is encoded as (1,1, 1,1, 1), a preventive
strategy where vaccine needs to be allocated exclusively to
children is encoded as (1,1,0,0,0).

To decide on the best vaccine allocation strategy, we enu-
merate all possible combinations of this tuple. Since the
tuple consists of a sequence of {0,1}", the tuple can be en-
coded as a binary number. This enables us to represent the
different allocation strategies by integers (i.e., {0, 1,...,31}).

With respect to the definition of the epidemiological model
(i.e., E =C x P — R), this set of 32 strategies is a subset
of P.

4.3 An influenza bandit

So far, we defined the model configurations (i.e., cro=1.3
and cpy=1.4) and the set of preventive strategies (i.e., 32
vaccine allocation strategies) to be evaluated.

Now, let us define the influenza preventive bandit Bpiy:
Bpyy, has exactly 32 arms (i.e., {Ao, ..., Az1} ). Each arm A;
is associated with the allocation strategy for which the inte-
ger encoding is equal to i. To conclude the specification of
the influenza bandit Bp;,,, we describe what happens when
an arm A; of Bpy, is played:

1. Invoke FIuTE with a model configuration ¢ € C and
the vaccine allocation strategy p; € P associated with
the arm A; (i.e., this is allocation strategy 4, using the
strategy’s integer representation).?

2. From FIuTE’s output, extract the proportion of the

population that experienced a symptomatic infection:
# symptomatic individuals
# individuals

3. Return a reward = 1 — #symptomatic individuals = Nj,¢e
individuals

that the reward denotes the proportion of individuals
that did not experience symptomatic infection.

4.4 Outcome distributions

To perform an initial analysis concerning the outcome dis-
tributions of the 32 prevention strategies, all strategies were
evaluated 1000 times for both model configurations (i.e.,
CRo=1.3 and cgy=1.4 € C). Note that generating thousands
of samples (i.e., 2 x 32000 in this case) would not be com-
putationally feasible when considering a larger population.
This analysis is performed to identify the best strategy, such
that we can properly validate the results from our learning
experiments.

The outcome distributions are visualized in Figure 1 and
Figure 2 for cpry—1.3 and cry—1.4 respectively. A violin plot is
used to plot the density of the outcome distribution per vac-
cine allocation strategy. The density for a particular strat-
egy is computed based on 1000 samples of the strategy’s out-
come distribution. Note that while the distributions have

2Note that the configuration is serialized as a text file, for
details on the format of this file, refer to Appendix B.
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Figure 1: Violin plot that depicts the density of
the outcome distribution for 32 vaccine allocation
strategies, considering a model environment with
Ro = 1.3. For each density, the sample mean is visu-
alized with a red diamond. The sample mean of the
optimal strategy is depicted with a red horizontal
line.

considerable density around the mean of the distribution,
there is also quite some density where the outcome is close
to 0. This is an artefact of the stochastic simulation: the
pathogen is not able to establish an epidemic for certain
simulation runs.

Our analysis shows that the best vaccine allocation strat-
egy was identified to be (0,1,0,0,0) (i.e. vaccine alloca-
tion strategy 8) for both model configurations cgr,=1.3 and
CR,=1.4.

4.5 UCBI and s-greedy experiment

To explore the utility of bandits to evaluate preventive
strategies, we average over 500 independent bandit runs for
both experiments. For each experiment, we run the e-greedy
(¢ = 0.1) and UCBI algorithm for 1000 iterations .

The average reward reported in the first experiment is
visualized in Figure 3 for both the e—greedy and UCBI1 al-
gorithm. The average reward reported in the second exper-
iment is visualized in Figure 4 for both the e—greedy and
UCBI1 algorithm.

We observe that the average reward starts to increase from
iteration 400, for both e—greedy and UCB1, and continues
to increase for the rest of the iterations. However, we also
note that the average reward learning curve increases faster
for e-greedy than for UCBI.

In the previous section, the best vaccine allocation strat-

3To remind the reader, each arm involves the invocation of
the FIuTE simulator, and is therefore associated with a sig-
nificant computational cost (for details, please see Appendix
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Figure 2: Violin plot that depicts the density of
the outcome distribution for 32 vaccine allocation
strategies, considering a model environment with
Ro = 1.4. For each density, the sample mean is visu-
alized with a red diamond. The sample mean of the
optimal strategy is depicted with a red horizontal
line.
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— eps-greedy — UCB

Figure 3: Reward learning curve for the first exper-
iment (i.e., model with Ry = 1.3), averaged over 500
independent bandits for 1000 iterations. This plot
depicts the learning curve for both the c—greedy
(i.e., red curve) and UCBL1 (i.e., blue curve) algo-
rithms.
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Figure 4: Reward learning curve for the first exper-
iment (i.e., model with Ry = 1.4), averaged over 500
independent bandits for 1000 iterations. This plot
depicts the learning curve for both the e¢—greedy
(i.e., red curve) and UCBL1 (i.e., blue curve) algo-
rithms.

egy was identified to be (0,1,0,0,0) (i.e. vaccine allocation
strategy 8) for both cry=1.3 and cr,=1.4. Figure 5 visualizes
the percentage of plays of the optimal arm (i.e., vaccine allo-
cation strategy (0, 1,0,0,0)) for the first experiment. Figure
6 visualizes the percentage of plays of the optimal arm (i.e.,
vaccine allocation strategy (0,1,0,0,0)) for the second ex-
periment.

For both of the experiments, e—greedy ends up selecting
optimal actions 60% of the time after 1000 iterations. As
we observed for the average reward learning curve, UCBI1
also performs worse with respect to the optimal action se-
lection learning curve, reaching only 40-45% optimal action
selection.

S. DISCUSSION

Our influenza model, and more specifically the context in
which only a limited set of vaccine doses is available, was
inspired by the work presented by Medlock [27]. However,
we consider a much smaller population (i.e., 2000 individuals
versus the entire United States), to make it computationally
feasible to validate our learning experiments. Furthermore,
because of the differences between the model setup presented
by Medlock and FIuTE, a perfect mapping was not possi-
ble. It would therefore not be sound to compare our results
directly to the results obtained by Medlock. We were, how-
ever, able to reproduce some significant trends. The best
strategy identified by our analyses is associated with the al-
location of vaccine to children: this is in agreement with
Medlock’s work.

The analysis of the outcome distributions for the different
vaccine allocation strategies shows that there is one optimal
strategy (0,1,0,0,0). The differences between the means
and medians of the different strategies are however not very
pronounced. This is related to the limited number of avail-
able vaccine doses. While this is a setting that would not
be majorly promising to policy makers, it provides us with
an interesting environment to test the performance of the
preventive bandits.

For both of the experiments, e—greedy ends up selecting
optimal actions 60% of the time after 1000 iterations. These
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Figure 5: Optimal action selection learning curve
for the first experiment (i.e., model with Ry = 1.3),
averaged over 500 independent bandits for 1000 it-
erations (i.e., the Y-axis depicts the % the optimal
action was selected). This plot depicts the learning
curve for both the s—greedy (i.e., red curve) and
UCBIL1 (i.e., blue curve) algorithms.
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Figure 6: Optimal action selection learning curve
for the first experiment (i.e., model with Ry = 1.4),
averaged over 500 independent bandits for 1000 it-
erations (i.e., the Y-axis depicts the % the optimal
action was selected). This plot depicts the learning
curve for both the s—greedy (i.e., red curve) and
UCBIL1 (i.e., blue curve) algorithms.



results demonstrate that it is possible to identify the optimal
strategy using only a limited number of model evaluations,
even if there is a large number of preventive strategies to
consider. We also observe, that both the average reward
and optimal action selection learning curves continue to in-
crease, indicating that the learning has not yet converged.
It is however important to stress that, our main interest is
not convergence, but to identify the best strategy using a
minimal number of model evaluations.

We observe that, in our experiment setting, c—greedy
outperforms UCB1, both with respect to the average re-
ward learning curve and the optimal action selection learn-
ing curve.

To support the reproducibility of our research, all source
code and configuration files used in our experiments is pub-
licly available (for details, please see the Appendices).

6. CONCLUSIONS

We formally defined the evaluation of prevention strate-
gies as a multi-armed bandit problem. We used this formal
definition to describe a bandit that can be used to evaluate
vaccine allocation strategies with the intention to mitigate
pandemic influenza. Two elaborate experiments were set up
to evaluate this preventive bandit using the popular FIuTE
individual-based model. To assess the performance of the
preventive bandit, we report an average over 500 indepen-
dent bandit runs, for the two experiments.

We demonstrate that it is possible to identify the optimal
strategy using only a limited number of model evaluations,
even if there is a large number of preventive strategies to
consider.

We are confident that our method has the potential to
be used as a decision support tool for mitigating influenza
epidemics. To increase this potential, we aim to significantly
extend the features of our tool and framework.

Firstly, while our method is evaluated in the context of
pandemic influenza, it is important to stress that both our
formalisms and infrastructure can be used to evaluate pre-
vention strategies for other infectious diseases. We expect
that epidemics of arboviruses (i.e., viruses that are transmit-
ted by a mosquito vector; e.g., Zika virus, Dengue virus) are
a particularly interesting use case for our preventive bandits.
Only since recently, Dengue and Zika vaccines are available
[20] or in the pipeline [11], and the optimal allocation of
these vaccines is an important research topic [15]. Addi-
tionally, there exist individual-based arbovirus models [10]
that could be readily applied to perform such analyses. We
aim to test our approach on these pathogens as well.

Secondly, we aim to make different algorithmic extensions.
In this study, we used elemental bandit learning algorithms
(i.e., e—greedy and UCB1). We acknowledge that other
algorithms could potentially learn faster. We created the
infrastructure to easily implement and experiment with dif-
ferent algorithms and epidemiological models (details can be
found in the Appendices) and we will use this framework to
explore the use of other algorithms. Furthermore, the use
of stateless reinforcement learning (i.e., bandits) presents
us with a stepping stone to consider reinforcement learning
where the partial or full state of the epidemiological model
(e.g., which people are currently infected, and which mea-
sures have already been taken and to what effect) is used to
learn preventive strategies that are more reactive towards
events that take place in the simulation. We believe that

such strategies may prove to be better than the static strate-
gies we used in this study.

Finally, our current preventive bandits only learn with
respect to a single model outcome: more specifically, for
influenza this is the proportion of symptomatic infections.
In the context of influenza, and for many infectious diseases,
there is often interest to consider additional model outcomes
(e.g., morbidity, mortality, cost). In the future, we aim to
use multi-objective multi-armed bandits[12] in contrast to the
current single-objective preventive bandits. With this ap-
proach, we plan to learn a coverage set containing an opti-
mal strategy for every possible preference profile the decision
makers might have [37]. We aim to design suitable quality
metrics [36, 40, 43] tailored to the use case of epidemiological
preventive strategy learning, to support the entire spectrum
of epidemiological models and thus to prevent method over-
fitting [43].
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APPENDIX
A. FLUTE SOURCE

FIuTE is a stochastic individual-based model, that is im-
plemented in C++. The original source code, as release by
FIuTE’s author (i.e., D. Chao), is available from
https://github.com/dlchao/FIuTE. This github repository
contains FIuTE’s C++ source code, GNU /Linux-specific make
files and a set of population density descriptions that can be
used to simulate particular geographical settings (i.e., 2000-
individual population, Seattle, Los Angelos and the entire
United States).

Some changes were made to the source code to make our
research easier: we organized the source code in a directory
structure and added a CMake meta-make file. This CMake
build file allows us to build the source code on GNU/Linux
and MacOS *. These changes are publicly available on the
https://github.com/vub-ai-lab/FluTE-bandits github repos-
itory.

B. FLUTE CONFIGURATIONS

“Microsoft Windows should also work with little changes,
but this was not tested yet.



To run our experiments, we defined a model environment
to evaluate pre-vaccination with little vaccine available, as
described in detail in section 4. The pre-vaccination configu-
ration script can be found in the ’configs/bandits’ directory
of the https://github.com/vub-ai-lab/FluTE-bandits github
repository. Note that this configuration script is a python
Mako template (http://makotemplates.org/), to enable easy
parameterization of the configuration script.

C.

BANDIT IMPLEMENTATION

We implemented a flexible bandit framework in Scala, the

code is publicly available on github: https://github.com/vub-

ai-lab/scala-bandits. This framework is specifically designed
to enable us to easily experiment with new algorithms and
environments (i.e., both Scala environments and external en-
vironments, such as e.g., the FIuTE simulator environment).

The

repository contains the e—greedy algorithm, the UCB1

algorithm, the Sutton test environment [39], the FIuTE en-
vironment and some post processing utilities.

D.

HIGH PERFORMANCE COMPUTING

Simulating epidemics using individual-based models is a

computationally intensive process.

Therefore, our experi-

ments were run on a powerful high performance computing
cluster: the Flemish Supercomputer Center. We report that,
to make this possible, all software had to be installed (or
build) for the high performance computing cluster. We re-

port

that our FluTE CMake file allows the generation of effi-

cient code (i.e., using SSE instructions) for all plaforms used
in our analyses (i.e., MacOS, XUbuntu desktop GNU/Linux

and
ter).

GNU/Linux on the high performance computing clus-
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