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ABSTRACT
Reward shaping is a well-established family of techniques
that have been successfully used to improve the performance
and learning speed of Reinforcement Learning agents in single-
objective problems. Here we extend the guarantees of Potential-
Based Reward Shaping (PBRS) by providing theoretical
proof that PBRS does not alter the true Pareto front in
MORL domains. We also contribute the first empirical stud-
ies of the effect of PBRS in MORL problems.
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1. INTRODUCTION
In Reinforcement Learning (RL), an agent learns to im-

prove its performance with experience by maximizing the
return from a reward function. The majority of RL research
focuses on optimising systems with respect to a single ob-
jective, despite the fact that many real world problems are
inherently multi-objective in nature. Single-objective ap-
proaches seek to find a single solution to a problem, whereas
in reality a system may have multiple conflicting objectives
that could be optimised. Examples of multi-objective prob-
lems include water resource management [5], traffic signal
control [3] and electricity generator scheduling [4].

Compromises between competing objectives can be de-
fined using the concept of Pareto dominance [7]. The Pareto
optimal or non-dominated set consists of solutions that are
incomparable, where each solution in the set is not domi-
nated by any of the others on every objective. In multi-
objective Reinforcement Learning (MORL) the reward sig-
nal is a vector, where each component represents the perfor-
mance on a different objective.

Reward shaping augments the reward function with addi-
tional knowledge provided by the system designer, with the
goal of improving learning speed. Potential-Based Reward
Shaping [6] (PBRS) is a specific form of reward shaping that
provides theoretical guarantees including policy invariance
in single-objective single-agent domains [6], and consistent
Nash equilibria in single-objective multi-agent domains [1].

Our work [2] has extended the previous guarantees of
PBRS with theoretical proof that the set of Pareto optimal
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solutions remains consistent when PBRS is used in multi-
objective domains, regardless of the quality of the heuristic
used. This means that the increased learning speed that is a
characteristic of PBRS can be leveraged in multi-objective
problem domains, without any risk of altering the intended
goals of the problem. The remainder of this paper pro-
vides an empirical demonstration of the effect of PBRS in a
single-agent MORL domain, and concludes with a discussion
of our findings.

2. DEEP SEA TREASURE RESULTS
The Convex Deep Sea Treasure (CDST) environment, shown

in Fig. 1, consists of 10 rows and 11 columns, and is a
modified version of the Deep Sea Treasure environment [8].
An agent controls a submarine, which searches for undersea
treasures. There are 10 treasure locations in all, and the
agent begins each episode in the top left state. An episode
ends after 1000 actions, or when the agent reaches a treasure
location. The agent’s state is defined as its current position
on the grid, and the actions available correspond to moving
one square in one of the four cardinal directions.

There are two objectives in this domain: to minimise the
time taken to reach a treasure, and to maximise the reward
received when a treasure is reached. After each action selec-
tion, the agent receives a reward vector with two elements.
The first element is the time reward, which is -1 for all turns.
The second element is the treasure reward, which is the value
for the corresponding cell in Fig. 1 if a treasure is reached,
and zero for all other turns. The Pareto front for this prob-
lem (Fig. 2) consists of 10 elements, with a non-dominated
policy corresponding to each of the 10 treasure locations.

We test three different Q-learning agents in the CDST: an
agent without reward shaping, an agent with a good PBRS
heuristic, and an agent with a poorly designed PBRS heuris-
tic. The good heuristic is intended to demonstrate the effect
of PBRS when useful domain knowledge is available, and
is expected to improve learning speed. Conversely, the poor
PBRS heuristic has been purposely designed to mislead the
agent receiving it, and is expected to reduce learning speed.
However, our formal proof of consistent Pareto fronts states
that all agents should learn the same set of policies, regard-
less of the quality of the PBRS heuristic used. The param-
eters used are num episodes = 3000, α = 0.1, γ = 1.0, and
ε = 0.998episode. Action values are optimistically initialised
to [0,125] for all non-terminal states, and to [0,0] for ter-
minal states. In order to sample all policies on the Pareto



Figure 1: The CDST domain

Figure 2: CDST Pareto front

front, we test each agent with 100 different objective weights
uniformly distributed in the continuous range [0.0,1.0]. The
non-dominated policies learned are then used to compute
the hypervolume of the agents’ policies during learning. Ex-
periments are repeated 30 times, and Fig. 3 shows the aver-
age hypervolume during learning. The hypervolume of the
Pareto front for the CDST is 2166, computed using a refer-
ence point of [-25,0]. The hypervolume measures the quality
of the policies learned, and values close to the maximum of
2166 indicate good learning performance.

From the learning curves in Fig. 3, it is evident that all
approaches have reached the maximum hypervolume of 2166
after 1200 episodes, and therefore have learned all 10 poli-
cies on the true Pareto front of the problem. When a good
PBRS heuristic is added, there is a substantial improvement
in learning speed, and the maximum hypervolume of 2166
is reached more quickly when compared to an agent learn-
ing without PBRS. Here PBRS has improved the learning
speed, without altering the set of Pareto optimal policies for
the problem. When using a poor PBRS heuristic, the learn-
ing speed is reduced compared to an agent learning without
PBRS, but the agent learning with a poor heuristic eventu-
ally converges to the maximum hypervolume, and success-
fully learns all 10 Pareto optimal policies. Thus, PBRS has
not altered the set of Pareto optimal policies, regardless of
the quality of the heuristic used, as per our theoretical proof.

Figure 3: Learning curves for the CDST domain
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