
Shared Learning in Ensemble Deep Q-Networks

Rakesh R Menon ∗

Indian Institute of Technology Madras
rakeshrmenon1995@gmail.com

Manu Srinath Halvagal∗
Indian Institute of Technology Madras

mshalvagal@gmail.com
Balaraman Ravindran

Indian Institute of Technology Madras
ravi@cse.iitm.ac.in

ABSTRACT
The exploration-exploitation dilemma in Reinforcement Learn-
ing problems, although well-studied, is still a major chal-
lenge as existing techniques do not scale well to environ-
ments with large state spaces. Most deep RL algorithms
use a naive extension of conventional exploration techniques
like ε-greedy. However, recent work such as Bootstrapped
DQN and A3C have introduced novel exploration strategies
based on ensembles of value estimates that address these
scalability issues to a large extent. In this work, we present
an algorithm that takes advantage of the ensemble architec-
ture of Bootstrapped DQN to further speed up learning by
sharing useful learning progress amongst the bootstrapped
value estimates.

Keywords
Co-operative learning, ensemble exploration, deep Q-networks

1. INTRODUCTION
Most deep Reinforcement Learning (RL) solutions still use

extensions of conventional exploration strategies that have
been well studied in bandit problems and simple MDPs.
However, exploration in large state spaces needs to be more
directed than is possible with these traditional exploration
strategies such as ε-greedy. The recently proposed Boot-
strapped DQN [9] offers a new exploration strategy that is
capable of deep directed exploration and is better suited for
deep RL problems.

Bootstrapped DQN works by learning multiple independent
estimates of the action-value function and guiding action se-
lection using a randomly selected estimate. The method re-
lies on variability among the different action-value estimates
(called heads) for effective and deep exploration. In Osband
et al.[9], this variability is ensured through both selective
masking of training examples as well as by the random ini-
tialization of network parameters of each head. However,
while Bootstrapped DQN explores by keeping its estimates
completely independent of each other, it is possible to speed
up learning in heads that dither in the earlier learning stages
by partially guiding them by using shared learning progress
from more successful heads.

In this work, we present a method for the bootstrap heads
to learn from each other in order to speed up learning in
the initial learning stages. Periodically, the head with the
∗Equal contribution

highest Q-value is selected to provide information to the
other heads. This information is passed in the form of ac-
tion selection in a double Q-learning update [5]. We show
the efficacy of our improved model on a toy MDP chain ex-
ample, a small maze-like task (puddle world) and finally on
Atari 2600 games using the ALE environment[3].

2. RELATED WORK
Prior work on exploration strategies in Reinforcement Learn-

ing have produced algorithms like Rmax [4] and E3 [7],
which have near-optimal results and theoretical guarantees
on MDP problems. However, such algorithms are intractable
when it comes to exploration in domains with large state
spaces. With the introduction of Deep Q-Networks (DQN)
[8] for such domains, there was a need for better exploration
strategies other than ε-greedy in order to perform human
level control in these complex environments.

Some recent works have studied the use of count-based meth-
ods that incorporate exploration bonuses based on a count
of the number of times a state-action pair is visited. These
bonuses are meant to promote the visitation of state-action
pairs that have been sparsely visited. Tang et al.[13] uses
the technique of hashing, wherein a part of the continuous
state space is hashed into a discrete state space and ex-
ploratory bonuses are given based on the visitation of the
discretized space. Bellamare et al.[2] has tried to predict
pseudo counts for state-action pairs using information theo-
retic approaches. This method has provided state-of-the-art
performance on Montezuma’s Revenge.

Another way of calculating exploratory bonuses involves the
use of intrinsic motivation [10, 1] and its idea of state saliency.
This state saliency idea has been exploited well in Stadie et
al.[11] wherein a model prediction error is used for calculat-
ing the exploratory bonus in Atari Games. Variational In-
formation Maximizing Exploration (VIME) [6] extends the
idea of intrinsic motivation to environments with continuous
state action spaces and encourages exploration by getting in-
formation about the environment dynamics.

Some of these methods seem to face an issue when it comes
to dealing with sparse rewards.Bootstrapped DQN [9] was
one of the first algorithms to introduce and show the effec-
tiveness of ensemble learning of Q-functions towards deep
exploration in Atari games. In this paper, we primarily fo-
cus on trying to speed up exploration by keeping track of and
utilising the learning progress made by individual estimates

in the Bootstrapped DQN architecture.

3. BACKGROUND

3.1 Q-learning
Reinforcement Learning deals with learning control poli-

cies in sequential decision making problems. A common ap-
proach is to learn an action-value function Q(s, a) : S,A →
R over the set of states S and actions A that can be taken
from each state. The action-value function reflects the long-
term profitability of taking any action. Q-learning [15] is
one method to learn the optimal action-value function for
an agent. The optimal policy can be achieved by behaving
greedily with respect to the learnt action-value function in
each state. The update rule for Q-learning is given as :

Qt+1(st, at) =Qt(st, at) + α(rt + γmaxaQt(st+1, a)

−Qt(st, at))

where Qt(s, a) and Qt+1(s, a) are the action-value function
estimates at times t and t+ 1 respectively, rt is the reward
obtained at time t for choosing action at in state st, α is the
learning rate, and γ is the discount factor.

3.2 Double Q-learning
The max operator in the Q-learning update has been shown

to produce overestimation of the action-value function. This
comes about because a single estimator is used both for
choosing the next action and for giving an estimate for the
value of that action. Double Q-learning [5] reduces the over-
estimations by decoupling the action selection and value es-
timation by training two estimators QA(s, a) and QB(s, a).
The update rule for double Q-learning is given as:

QA
t+1(st, at) =QA

t (st, at)

+ α(rt + γQB
t (st+1, argmaxaQ

A
t (st, a))

−QA
t (st, at))

3.3 Deep Q-Networks (DQN)
In environments with large state spaces, it is not possi-

ble to learn values for every possible state-action pair. The
need for generalising from experience of a small subset of
the state space to give useful approximations of the action-
value function becomes a key issue [12]. Neural networks,
while attractive as potential action-value function approx-
imators, were known to be unstable or even to diverge on
Reinforcement Learning problems. Mnih et al.[8] success-
fully overcame these problems with two crucial ideas: replay
memory and target networks. The parametrised action-value
function was trained using the expected squared TD-error
as the loss signal given to the neural network.

Li(θi) = Es,a,r,s′ [((r + γmaxa′Q(s, a′; θ−i)−Q(s, a; θi))
2]

Here, Li(θi) is the loss function, θi is the current parame-
ters of the network and θ−i is the parameters of the target
network. The target network is needed in order to provide
stationary targets so as to ensure stable training. The pur-
pose of the replay memory is to reduce the correlation of the
samples provided to the network during training.

Figure 1: Bootstrapped DQN architecture

3.4 Bootstrapped DQN
The key idea behind exploration with ensembles is that

although all the action-value estimators may converge to
the same policy eventually, a large number of exploratory
actions are taken as a consequence of different estimators
deciding the behaviour in each episode during the initial
phase of learning. Bootstrapped DQN [9] algorithm is im-
plemented by adding multiple head networks which branch
out from the output of the CNN as shown in Figure 1. The
outputs from each head represent different independent es-
timates of the action-value function, which promotes explo-
ration. Surprisingly, random initialization of the heads alone
was seen to be sufficient to ensure the required variability.
The author(s) claim that when a new action is sampled by
one of the heads of the network, the TD bootstrapping up-
date can propagate signals through the target network to
drive exploration.

4. SHARED LEARNING
With the bootstrap exploration framework, we have k dif-

ferent action-value function estimates. While there is no
communication between heads in the original Bootstrapped
DQN, that extent of independence between the heads might
be unnecessary. Our work investigates if some amount of
guidance of dithering heads by other more successful heads
would speed up learning in the overall ensemble. This would
be in some sense an online transfer of learned knowledge. In
our formulation, the extent of this sharing of experience can
be varied by varying the probability with which a guided
update is made instead of the regular DQN update.

The technique is formulated as follows. At regular intervals,
a locally best estimator is selected on the basis of a metric
that measures learning progress to a reasonable extent. Un-
til the next such selection, this head guides the learning of
the other heads through the double Q-learning update rule
as given below.

Qi
t+1(st, at) =Qi

t(st, at)

+ α(rt + γQj
t(st+1, argmaxaQ

best
t (st, a))

−Qi
t(st, at))

The metric that is chosen for measuring learning progress
can be either cumulative TD-error or the action-value func-
tion estimates. The extent of such guidance can be varied by
making it a stochastic decision whether to use guided target

values or whether to use the normal update rule.

In this way, the ensemble agent can explore and understand
parts of the state space which were rewarding initially really
well. We hypothesize that using this method should be able
to speed up learning of all the estimators at the expense of
a slight decrease in exploration.

5. EXPERIMENTS

5.1 MDP
We present a toy chain MDP experiment to demonstrate

the improved exploration of the new approach. The MDP
consists of k states, arranged sequentially. The agent always
starts from state 2. From each state four actions are allowed
namely, go left, go right, do nothing or jump to state 1 incur-
ring a reward of -10 and terminate the episode. The episode
ends when the agent has reached the kth state upon which
it receives a reward of +10.

We used normal Q-learning(with ε-greedy) and double Q-
learning(with ε-greedy) as baselines to compare the perfor-
mance of a bootstrap agent (5 heads) with and without
shared learning. The figures below show the result for a
35 and 50 state MDP.

Figure 2: MDP Chain Structure with n-states

Figure 3: MDP results showing average reward ob-
tained per episode and number of steps taken until
completion for 35-state chain MDP

Solving the above environment requires deep exploration,
especially with a larger number of states. This is illustrated
by the fact that Q-learning and double Q-learning, with ε-
greedy exploration, are unable to solve large MDP chains
(beyond 20 states). Bootstrap DQN (adapted for tabular
settings) showed how deep exploration can be performed by
its algorithm and its benefits can be seen in the figures.
We observe that the speedup due to shared learning be-
comes more crucial with increasing chain length. The per-
formance of both Bootstrapped DQN and shared learning
would probably be identical on this problem until the first
time the goal state is reached. It is at this point that sharing

Figure 4: MDP results showing average reward ob-
tained per episode and number of steps taken until
completion for 50-state chain MDP

learned experience becomes vital so that knowledge of the
goal state propagates out to every head. The faster this hap-
pens, the faster the entire network learns. This is the reason
why shared learning outperforms the bootstrap algorithm on
larger MDP chains. The fact that our algorithm is still capa-
ble of performing deep exploration shows that sharing does
not take away from the diversity among the estimates, which
is what drives the exploration in Bootstrapped DQN.

5.2 Puddle World
The puddle world is a typical grid world, with 4 stochastic

actions. The actions might result in movement in a direction
other than the one intended with a probability of 0.1. For
example, if the selected action is North, it will transition to
the cell one above the agent’s current position with proba-
bility 0.9. It will transition to one of the other neighbouring
cells with probability 0.1/3. Transitions that take it off the
grid will not result in any change.

There is also a gentle Westerly blowing, that will push the
agent one additional cell to the East, regardless of the effect
of the action you took, with a probability of 0.5.

The episodes start with the agent in one of the start states
in the first column, with equal probability. We inspect two
variants of the problem, A(0,11) and C(6,7). In each of
these, the goal is in the square marked with the respective
alphabet as shown in Figure 5. There is a puddle in the
middle of the grid world, which the agent should avoid. Ev-
ery transition into a puddle cell, gives a negative reward,
depending on the depth of the puddle at that point, as indi-
cated in the figure, and a reward of +10 is given on reaching
the goal. The environment used for these experiments do

Figure 5: Layout of Puddle World

not necessarily require deep exploration as grid size is very
small. This is why normal and double Q-learning, with ε-
greedy, are able to complete the task successfully. However,
what seems to be more interesting is the fact that Bootstrap
DQN (adapted for tabular settings) is able to outperform the

Figure 6: Puddle World results for Shared Learning
and Bootstrap

above mentioned algorithms in a small world as well. This
shows the effectiveness of ensemble exploration strategies
for environments of all scales. Furthermore, shared learning
seems to help the exploration from dithering to uninforma-
tive states. This can be seen more evidently in the case of
goal C(6,7) wherein, bootstrap DQN was seen to marginally
unlearn while the shared learning algorithm seems to help
the agent in continuing to learn.

5.3 Arcade Learning Environment
We evaluate our model on 3 Atari games on the Arcade

Learning Environment [3]. The games chosen for compari-
son were Frostbite (Figure 9) and Hero (Figure 10). These
games have been chosen in order to compare with the results
shown in Osband et al.[9]. The network architecture is same
as that of Bootstrapped DQN and consists of a shared con-
volutional layer followed by 10 bootstrap heads to provide
action-value function estimates. Gradient normalisation of
1/K (K is the number of bootstrap heads) was also applied
to the network with no masking of heads. The learning
progress for the Atari games have been measured, at inter-
vals of 100 steps, using the Q-values. The head correspond-
ing to the maximum Q-value is chosen to be the best head
that is suitable for information transfer.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 7: Average Reward on Breakout after 35
epochs of training

Table 1 shows the cumulative rewards obtained on the
Atari games Pong and Qbert.

We have not presented the performance of DQN [8] and
double DQN [14], since it was shown in Osband et al.[9] that
Bootstrapped DQN clearly outperforms them. Our results
show an increased cumulative reward during learning, while

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 8: Average Reward on Seaquest after 50
epochs of training

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 9: Average Reward on Frostbite after 50
epochs of training

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 10: Average Reward on Hero after 50 epochs
of training

Cumulative Reward on Atari Games during testing
Game Shared Learning

Score
Bootstrapped
DQN Score

Qbert 39001.6661 15286.0259
Pong -44.9735 -80.4237

Table 1: 20 epoch cumulative scores

Bootstrapped DQN appears to dither to a larger extent. We
are currently studying this behavior for all 60 games as well
as for a larger number of epochs.

6. CONCLUSION AND FUTURE WORK
In this work, we have presented a method to speed up

Bootstrapped DQN based on shared learning progress, with-

out affecting its deep exploration capabilities. We have also
introduced the notion of online transfer of knowledge, which
we would like to investigate further on a wider array of
AI tasks. While we have presented the sharing of learn-
ing through the double Q-learning update in the form of
action-selection, we would like to look into other means of
sharing knowledge via attention.

REFERENCES
[1] A. G. Barto. Intrinsic motivation and reinforcement

learning. In Intrinsically motivated learning in natural
and artificial systems, pages 17–47. Springer, 2013.

[2] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul,
D. Saxton, and R. Munos. Unifying count-based
exploration and intrinsic motivation. In Advances in
Neural Information Processing Systems, pages
1471–1479, 2016.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and
M. Bowling. The arcade learning environment: An
evaluation platform for general agents. J. Artif. Intell.
Res.(JAIR), 47:253–279, 2013.

[4] R. I. Brafman and M. Tennenholtz. R-max-a general
polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning
Research, 3(Oct):213–231, 2002.

[5] H. V. Hasselt. Double q-learning. In Advances in
Neural Information Processing Systems, pages
2613–2621, 2010.

[6] R. Houthooft, X. Chen, Y. Duan, J. Schulman,
F. De Turck, and P. Abbeel. Vime: Variational
information maximizing exploration. In Advances in
Neural Information Processing Systems, pages
1109–1117, 2016.

[7] M. Kearns and D. Koller. Efficient reinforcement
learning in factored mdps. In IJCAI, volume 16, pages
740–747, 1999.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[9] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy.
Deep exploration via bootstrapped dqn. In Advances
In Neural Information Processing Systems, pages
4026–4034, 2016.

[10] S. P. Singh, A. G. Barto, and N. Chentanez.
Intrinsically motivated reinforcement learning. In
NIPS, volume 17, pages 1281–1288, 2004.

[11] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing
exploration in reinforcement learning with deep
predictive models. CoRR, abs/1507.00814, 2015.

[12] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge,
1998.

[13] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen,
Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel.
#exploration: A study of count-based exploration for
deep reinforcement learning. CoRR, abs/1611.04717,
2016.

[14] H. Van Hasselt, A. Guez, and D. Silver. Deep
reinforcement learning with double q-learning. In

AAAI, pages 2094–2100, 2016.

[15] C. J. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

