
Applying Q(λ)-learning in Deep Reinforcement Learning to
Play Atari Games

Seyed Sajad Mousavi

National University of Ireland, Galway

s.mousavi1@nuiglaway.ie

Michael Schukat

National University of Ireland, Galway

Michael.schukat@nuigalway.ie

Enda Howley
National University of Ireland, Galway

ehowley@nuigalway.ie

Patrick Mannion

National University of Ireland, Galway

p.mannion3@nuigalway.ie

ABSTRACT

In order to accelerate the learning process in high dimensional

reinforcement learning problems, TD methods such as Q-learning

and Sarsa are usually combined with eligibility traces. The recently

introduced DQN (Deep Q-Network) algorithm, which is a

combination of Q-learning with a deep neural network, has

achieved good performance on several games in the Atari 2600

domain. However, the DQN training is very slow and requires too

many time steps to converge. In this paper, we use the eligibility

traces mechanism and propose the deep Q(λ) network algorithm.

The proposed method provides faster learning in comparison with

the DQN method. Empirical results on a range of games show that

the deep Q(λ) network significantly reduces learning time.

Categories and Subject Descriptors

• Computing methodologies → Sequential decision making

General Terms

Algorithms, Performance, Experimentation

Keywords

Reinforcement learning, Deep learning, Temporal difference

methods, Q(λ)-learning

1. INTRODUCTION
Reinforcement learning [1, 2] is a suitable framework for sequential

decision making problems where an agent makes a sequence of

observations of its environment and make decisions based on them.

To this end, many reinforcement learning methods have been

developed [1, 3]. Two of the most popular and successful temporal

difference [4] reinforcement learning algorithms are Q-learning [5]

and Sarsa (stands for state, action, reward, state and action) [6]. The

methods have been applied to a wide range of problems ranging

from control and robotic problems [7] to resource allocation [8] and

cloud computing [9]. However many real world problems have

very large state spaces and delayed rewards i.e. high dimensional

problems with sparse rewards. For these problems, the naïve

structure of these methods is not very efficient. If these algorithms

do converge, the learning process is slow and requires a large

number of time steps.

To deal with high dimensional reinforcement learning tasks and to

speed up the learning process, many solutions such as hierarchical

reinforcement learning [10, 11] and eligibility traces [3, 4] have

been proposed. Eligibility traces are one the most commonly used

mechanisms of reinforcement learning. The use of eligibility traces

can significantly increase learning speed. In order to obtain this

performance increase, a basic temporal difference (TD) method was

combined with eligibility traces, called TD (λ) [4, 12] . Combining

these methods bridged the gap between TD learning and Monte

Carlo methods, thus making it possible to take advantage of the

strength of each algorithm. The λ parameter controls after how

many steps (e.g. n steps) the backup should be made. In fact, the

value of λ for the eligibility traces determines the balance between

TD and Monte Carlo methods.

Recent research on deep learning and reinforcement learning have

led to introduce a novel method called the deep q-network (DQN)

[13, 14] which is a combination of the Q-learning algorithm and

convolutional neural networks [15] which are a type of deep neural

network. DQN has been tested within the Atari 2600 computer

games environment. In many games the DQN’s strategy

outperformed the human player and achieved state of the art

performance on several games with the same network architecture

(hyper-parameters). However, applying this method to real world

problems, such as robotics, is very challenging. This is because

performing a large number of training episodes to collect samples

is resource consuming and in many cases not even possible. Other

combinations of reinforcement learning and deep neural nets are

therefore needed to alleviate this problem.

One of most important extension of the simple Q-learning

algorithm (1-step Q-learning) is Q (λ)-learning [5, 16]. Q (λ)-

learning combines Q-learning and TD(λ). The Q (λ)-learning

algorithm performs significantly better than the naive Q-learning

algorithm on a number of tasks [1, 4]. This is due to enhanced

performance that eligibility traces mechanism provides i.e.

considering a temporary history of a set of transitions such as

previously observed states and taken actions.

In this paper, we build on the idea of the eligibility traces, in

particular the Q(λ)-learning algorithm. We extend this method to a

more general setting by utilizing deep neural networks as a function

approximation (similar to the DQN method). This deep neural

network is used to estimate Q values in order to speed up the

learning process. We propose a new algorithm called Deep Q(λ)-

Network (DQ(λ)N). A range of Atari 2600 games will be used as a

testbed to evaluate the proposed DQ(λ)N algorithm.

The rest of this article is organized as follows. In Section 2 and 3,

we introduce the problem setting and a technical background of

reinforcement learning and deep Q-learning, respectively. Then in

Section 4, we present DQ(λ)N algorithm and describe how it works.

In Section 5, we empirically demonstrate that proposed method

performs better than DQN on a range of Atari 2600 games. Finally,

in Section 6 we will draw conclusions based on these results.

mailto:Michael.schukat@nuigalway.ie
mailto:ehowley@nuigalway.ie

2. BACKGROUND
The goal of a reinforcement learning (RL) agent is to estimate the

optimal policies or the optimal value function of a Markov decision

process (MDP) in an unknown environment. If the state and action

spaces are finite, then the problem is called a finite MDP. Similar

to much of literature that has assumed a finite MDP environment,

we also consider finite MDPs.

A RL problem modelled as a Markov decision process is described

as follows: The learning agent interacts with the environment,

through its sensors, by performing actions and receiving

observations and rewards. The interaction is continued until

reaching the terminal state or a termination condition is met. A

MDP is a five-tuple (𝑆, 𝐴, 𝛾, 𝑇, 𝑅), where 𝑆 is the set of states in the

state space, 𝐴 is the set of actions in the action space, 0 ≤ 𝛾 ≤ 1 is

the discount factor, T is the transition function, which 𝑇(𝑠, a, 𝑠′)

denoting the probability of reaching next state 𝑠′ from s by taking

action 𝑎 at time step 𝑡 and R is the reward function with R(𝑠, 𝑎)

denoting the expected reward from taking action 𝑎 in state s at time

step 𝑡. The aim of the learning agent is to learn an optimal policy π,

which defines the probability of selecting action a in state s, so that

with following the underlying policy the sum of the discounted

rewards is over time maximized. The expected discounted return

𝑅𝑡 at time t is defined as follows:

𝑅𝑡 = 𝐸{𝑟𝑡, 𝛾𝑟𝑡+1, 𝛾2𝑟𝑡+2 + ⋯ } = 𝐸 [∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘] (1)

Where 𝐸[.] expectation with respect to the reward distribution and
𝑟𝑡 ∈ ℝ is a scalar reward obtained at step 𝑡. With regard to the
transition function and the expected discounted immediate rewards,
which are the essential elements for specifying dynamics of a finite
MDP, action-value function 𝑄π(𝑠, 𝑎) is defined as follows.

𝑄π(𝑠, 𝑎) = 𝐸π[𝑅𝑡|s𝑡 = s, a𝑡 = a] = 𝐸π[∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘|𝑠𝑡 =

s, 𝑎𝑡 = a] (2)

The action-value function 𝑄π(𝑠, 𝑎) for an agent is the expected
return achievable by starting from state s, s ∈ S, and performing
action a, 𝑎 ∈ 𝐴 and then following policy π, where 𝜋 is a mapping
from states to actions or distributions over actions.

Due to the recursive property of the the equation (2), the formula can
be rewritten as follows:

𝑄𝑖+1
π(𝑠, 𝑎) = 𝐸π [𝑟𝑡 + 𝛾 ∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘+1|𝑠𝑡 = s, 𝑎𝑡 = a]

= 𝐸π[𝑟𝑡 + 𝛾𝑄𝑖
π(𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′)|𝑠𝑡

= s, 𝑎𝑡 = a] (3)

Which is used as the update rule of the estimation of value function
at ith iteration.

The optimal policy, 𝜋∗, is a policy that maximizes 𝑄π(𝑠, 𝑎) and as
a result, an optimal value function 𝑄∗(𝑠, 𝑎). An iterative update for
estimating the optimal value function is defined as follows:

𝑄𝑖+1(𝑠, 𝑎) = 𝐸π[𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎′𝑄𝑖(𝑠′, 𝑎′)|s, a] (4)

Where it is implicit that s, 𝑠′ ∈ S and a, 𝑎′ ∈ A. The iteration
converges to the optimal value function, 𝑄∗ as 𝑖 → ∞ and called
value iteration algorithm [1].

A well-known form of temporal difference learning [4] for
estimating 𝑄π for a given policy π is the Q-learning algorithm,
introduced by Watkins [5]. In many real world tasks, state and action
spaces are too large and the use of a table of all 𝑄(𝑠, 𝑎) values (Q-
table lookup representation) is inefficient. To address this, the
function approximation technique is utilized to estimate the value
function [17]. Thus, the value function is parameterized 𝑄(𝑠, 𝑎; 𝜃)
with parameter vector 𝜃. Usually gradient-descent methods are used
to learn parameters by trying to minimize the following loss function
of mean-squared error in Q values:

𝐿(𝜃) = 𝐸 [(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) − 𝑄(𝑠, 𝑎; 𝜃))
2

] (5)

Where 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) is the target value. Typically, for
optimizing the loss function above the stochastic gradient descent
method is used. Hence, in the Q-learning algorithm, the parameters
are updated as follow:

𝜃𝑖 = 𝜃𝑖−1 + 𝛼(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖))
𝜕𝑄(𝑠,𝑎;𝜃𝑖)

𝜕𝜃𝑖
 (6)

Where it is implicit that 𝑦𝑖 = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃𝑖−1) is the

target value for iteration i and 𝛼 is a scalar learning rate.

2.1 Q(λ)-LEARNING
To accelerate the learning process in reinforcement learning tasks,

TD(λ) (TD learning with eligibility traces) methods [4] are

incorporated into the Q-learning algorithm. This results in Q(λ)-

learning method. The eligibility traces consider a temporary history

of a set of transitions such as previously observed states and taken

actions. In TD(λ) the backup is made after n steps not after every

one step. The amount of n is controlled by λ 𝜖 [0, 1] parameter (e.g.

in TD(0), the backup is made after each one step). The eligibility

trace of each state-action pair in the process of action-value

learning becomes large after visiting the state-action pair and

decreases as the state-action pair is not visited. When we use

function approximation instead of Q-table lookup to estimate Q

values, a trace is considered for each component of the parameter

vector 𝜃 and there is no single trace corresponding to a state [1].

Thus, TD(λ) updates the vector 𝜃 as follows:

𝜃𝑖 = 𝜃𝑖−1 + 𝛼𝛿𝑖𝑒𝑖 (7)

Where 𝛿𝑖 = 𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖) is TD error and 𝑒𝑖 = 𝛾𝜆𝑒𝑖−1 +
𝜕𝑄(𝑠,𝑎;𝜃𝑖)

𝜕𝜃𝑖
 is its eligibility value. Note that when 𝜆 = 0, the TD(λ)

update is the TD(0) update.

There are two main approaches that combine the eligibility traces

and Q-learning (i.e. to Q(λ)). These are different at dealing with

exploratory (non-greedy) actions: First is Watkins's Q(λ) [5], where

the eligibility traces are set to zero whenever an non-greedy action

is taken (i.e. learning is stopped after each non-greedy action

selected), and second is Peng's Q(λ) [16], where there is no

difference between non-greedy and greedy actions.

3. DEEP Q-LEARNING
A deep Q learning Network (DQN) [13, 14] gets the benefits of

deep learning for abstract representation in learning an optimal

policy. The DQN algorithm incorporates a deep neural network

function approximator with Q-learning and outputs legal action

values for a given state. Using model-free reinforcement learning

algorithms such as Q-learning algorithm with non-linear function

Figure 1: Three frames of 3 Atari 2600 games: Q*bert, Pong and Space Invaders, respectively.

approximators such as neural networks, causes some instability

issues and might lead to divergence [18]. The reasons for these

issues are as follows: 1) Consecutive states in reinforcement

learning tasks have correlation. 2) The underlying policy of the

agent is changing frequently, because of slight changes in Q-values.

To cope with these problems, the DQN provides some solutions

which improve the performance of the algorithm significantly. For

the problem of correlated states, DQN uses the previously proposed

experience replay approach [19]. In this way, at each time step, the

DQN stores the agent’s experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑟𝑡+1) into a date set

D, where 𝑠𝑡, 𝑎𝑡 , and 𝑟𝑡 are the state, selected action and received

reward, respectively and 𝑠𝑡+1 is the state at the next time step. To

update the network, the DQN utilizes stochastic minibatch updates

with uniformly random sampling from the experience replay

memory (previous observed transitions) at training time. This

neglects strong correlations between consecutive samples. The

instability problem of the policy is solved with a target Q-network.

The network is trained with the target Q-network to obtain

consistent Q-learning targets by keeping the weight parameters

(𝜃−) used in the Q-learning target fixed and updating them

periodically every N steps through the parameters of the main

network, 𝜃. The target value of the DQN is represented as follows:

𝑦𝑖 = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃−
𝑖−1) (8)

Where 𝜃− is parameters of the target network.

4. DEEP Q(λ)-LEARNING (DEEP Q(λ)

NETWORK)
 We consider a naïve type of Watkins's Q(λ)-learning, although

there are other variations of Q(λ) such as Peng's Q(λ), to combine

with deep learning. The naïve type is similar to Watkins's Q(λ), but

the eligibility traces are not set to zero on non-greedy actions. With

regard to TD(λ) we propose the following update rule for the vector

𝜃 of the proposed algorithm which we refer DQ(λ)N:

 𝜃𝑖 = 𝜃𝑖−1 + 𝛼𝛿𝑡𝑒𝑡 (9)

𝑒𝑖 = 𝛾𝜆𝑒𝑖−1 +
𝜕𝑄(𝑠,𝑎;𝜃𝑖)

𝜕𝜃𝑖
 (10)

𝛿𝑖 = 𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖) (11)

Where 𝑦𝑖 = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃−
𝑖−1) is the target value, which

is the same as for DQN.

Comparing the above equations with equation (7), outlines the key
difference between the DQ(λ)N and the DQN approach. These two
approaches are similar as they both calculate the target value using
a target network with the weights 𝜃−

𝑖−1. The target network is
updated based on the main network periodically. To prevent
divergence in parameters an experience replay mechanism [19] is
applied [14].

Algorithm 1 summarizes the proposed deep Q(λ)-learning method,

where the vector e contains the trace vector for each component of

the parameter vector 𝜃, corresponding to the eligibility traces [1].

For λ = 0, the algorithm is DQ(0)N that is the same as the DQN.

Algorithm 1: Deep Q(λ)-learning

initialize θ with random values

initialize replay memory 𝑴 with capacity N
for each episode repeat:

initialize e = 0
initialize 𝒔
for each step in the episode repeat:

choose action 𝒂 according to 𝜺-greedy policy
take action 𝒂, observe reward 𝒓 and next state 𝒔′
store transition (𝒔, 𝒂, 𝒓, 𝒔′) in 𝑴
𝒔 ← 𝒔′

𝒃 ← sample a sequence of transitions from the replay
memory, 𝑴
if 𝒔𝒃 (as the last state in the sequence) == terminal:
 𝒚 ← 𝟎
else:
 𝒚 ← 𝒎𝒂𝒙𝒂𝑸(𝒔𝒃, 𝒂; 𝜽−)
for each transition (𝒔𝒋, 𝒂𝒋, 𝒓𝒋, 𝒔𝒋

′) in reverse(b) repeat:

 𝒚 ← 𝒓𝒋 + 𝜸𝒚

𝒆 ← 𝜸𝝀𝒆 +
𝝏𝑸(𝒔𝒋,𝒂𝒋;𝜽)

𝝏𝜽

𝜹 ← 𝒚 − 𝑸(𝒔𝒋, 𝒂𝒋; 𝜽)

𝜽 ← 𝜽 + 𝜶𝜹𝒆
 until s is terminal

5. EMPIRICAL RESULTS
In this section, we present the performance results of the DQ(λ)N

algorithm and show how it performs better than the DQN in terms

of its rate of learning. The proposed method was evaluated on 3

Atari 2600 games in the Arcade Learning Environment (ALE) [20].

The ALE presents an environment that emulates the Atari 2600

games. It provides a very challenging environment for

reinforcement learning that has high dimensional visual input

which is partially observable. It presents a range of interesting

Figure 2: A comparison of performance of average score and steps per episode of the proposed algorithm with λ = 0.7 and the DQN

on the game Pong. One epoch corresponds to 10 episodes and each score is an average of running an 𝝐-greedy policy, with 𝝐 = 0.05

for 5 episosdes.

games that new methods can be tested. For our experiments we

selected 3 Atari games: Q*bert ,Pong and Space Invaders, as shown

in Figure 1. The goal of a RL algorithm is to learn a specific optimal

policy to play each of the games just by using raw pixels frames as

input.

The network architecture that we used is similar to Mnih et al [14].

It contains three hidden fully convolutional layers [21] and a fully-

connected hidden layer. The output layer is a fully-connected linear

layer with a number of output neurons corresponding to each action

in the game. The network computes Q values of the individual

action of the input state, where each state is a stack of 4 frames

recently observed by the agent (to see more details refer to [14]).

Evaluation of learned policies by the agent was conducted every 10

episodes by running an 𝜖-greedy policy with 𝜀 = 0.05 for 5 episodes

and averaging the resulting scores and steps. The networks were

trained for 200 epochs (each epoch 10 episode considered) and the

size of the replay memory was 500, 000. All weights of the

networks were updated by the RMSProp optimizer [22] with a

learning rate of 𝛼 = 0.00025 and a momentum of 0.95. The target

network was updated after each 10000 steps. Training for all the

games was done without changing in the network architecture and

all hyper-parameters settings. The rest of settings were the same as

those utilized in [14].

Figure 3: Th first column shows a comparison of performance of average score per episode of the proposed algorithm and the

DQN on Q*bert and Space Invaders games respectively. For each game, one epoch corresponds to 10 episodes and each score is an

average of running an 𝝐-greedy policy, with 𝝐 = 0.05 for 5 episosdes.The secound column shows the average of the predicted Q per

episode for the DQ(λ)N with λ = 0.7 and the DQN when the agent select greedy actions during training process on Q*bert and Space

invaders games, respectively.

5.1 Results
In order to validate our approach we compare it with the deep Q

network. The results presented in Figures 2 and 3 show the

performance results of the proposed DQ(λ)N algorithm and the

DQN. The graphs present the average total reward and steps

collected by the agent, also the average of the predicted Q during

training phase on 3 games: Pong, Q*bert and Space Invaders. As

expected, our results demonstrate the accelerated learning provided

by the DQ(λ)N. The left plots in Figure 2 and Figure 3 show the

faster convergence of DQ(λ)N compared to the DQN. This is

particularly evident in the Pong game (Figure 2), where we can see

that the learning rate of DQ(λ)N is clearly better. In this case, it was

revealed that the proposed method could reach the optimal average

score approximately 1.5 times faster than the DQN and

significantly better (paired t-test, p < 0.05) average scores were

obtained during training period. The second metric that we consider

is the average total steps needed per episode by an agent during

training. The right plot of Figure 2 shows the average number of

steps taken by DQ(λ)N agent increases in early epochs but then

decreases to a similar number of steps as the DQN. It is evident that

the DQ(λ)N takes more steps than the DQN. This may appear to be

a negative feature of the proposed DQ(λ)N as a lower number of

steps is desirable. On the contrary, we argue that this reveals a key

advantage feature of our method. The left plot of Figure 2

demonstrates that the algorithm is consistently progressing, in this

case in the Pong game. Having a higher number of steps initially in

comparison to the DQN, indicates that the DQ(λ)N has learned

faster and tries to hit the ball to avoid of getting negative reward.

This is why more steps are required initially for DQ(λ)N.

As described by Mnih et al. [13] another metric for evaluating a

reinforcement learning agent is the policy’s estimated Q value,

which computes the received discounted reward while the agent

follows a certain policy. The right plots of Figure 3 illustrate that

the average predicted Q value by our method increases over time at

a faster rate than that of the DQN. This reflects that the model is

learning gradually in stable manner that is also significantly faster

when compared to the DQN algorithm.

To further analysis, a paired t-test was conducted to compare the

received average total reward in the proposed method and the DQN

on three Atari 2600 games: Pong, Q*bert and Space Invaders. As

shown in Table 1, the DQ(λ)N gave significantly higher (p < 0.05)

average reward for each game. These results suggest that the

proposed method can achieve more scores in the early stage of

learning and as a result speeding up in learning process.

Table 1: Paired t-test results comparing the DQ(λ)N and the

DQN algorithms on the received average total reward.

Game Number of epochs t-statistic p-value

Pong 100 -10.064 0.000

Q*bert 100 -2.696 0.008

Space Invaders 100 -2.967 0.003

6. CONCLUSION
This paper proposed the combination of TD (λ) learning, in

particular Q(λ)-learning and a deep neural network. We extended

the DQN algorithm to take into account eligibility traces. This

novel combination, Deep Q(λ) Network (DQ(λ)N), allowed us to

take advantage of the DQN algorithm and the eligibility trace

mechanism in order to further accelerate the learning process. The

proposed method was compared to the DQN method by testing the

algorithm on 3 Atari 2600 games. Empirical results confirm that

DQ(λ)N can learn the satisfactory control policies in fewer number

of trials (i.e. speeding up the learning process) in comparison to

DQN. This was observed for all 3 games. In this work, we

investigated one TD(λ) learning algorithm, the naïve form of Q(λ)

learning. A natural direction for future work would be to

incorporate the other variations of TD(λ) [5, 6, 16, 23] or the least

square based methods with the possibility of eligibility trace

mechanism [24] such as the least-squares temporal difference

(LSTD(λ)) [25], the least-squares policy evaluation (LSPE(λ)) [26,

27], etc. into deep neural networks and establish which method

performs best.

7. REFERENCES
[1] R. S. Sutton, and A. G. Barto, Introduction to Reinforcement

Learning: MIT Press, 1998.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore,

“Reinforcement learning: A survey,” Journal of artificial

intelligence research, vol. 4, pp. 237-285, 1996.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike

adaptive elements that can solve difficult learning control

problems,” IEEE Transactions on Systems, Man, and

Cybernetics, vol. SMC-13, no. 5, pp. 834-846, 1983.

[4] R. S. Sutton, “Learning to Predict by the Methods of

Temporal Differences,” Machine Learning, vol. 3, no. 1, pp.

9-44, 1988.

[5] C. J. C. H. Watkins, “Learning from Delayed Rewards,”

King's College, Cambridge, Cambridge, UK, 1989.

[6] G. A. Rummery, and M. Niranjan, On-Line Q-Learning

Using Connectionist Systems, 1994.

[7] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement

learning in robotics: A survey,” The International Journal of

Robotics Research, vol. 32, no. 11, pp. 1238-1274,

September 1, 2013, 2013.

[8] D. Vengerov, “A reinforcement learning approach to

dynamic resource allocation,” Engineering Applications of

Artificial Intelligence, vol. 20, no. 3, pp. 383-390, 2007.

[9] M. Duggan, J. Duggan, E. Howley, and E. Barrett, “An

Autonomous Network Aware VM Migration Strategy in

Cloud Data Centres.”

[10] A. G. Barto, and S. Mahadevan, “Recent Advances in

Hierarchical Reinforcement Learning,” Discrete Event

Dynamic Systems, vol. 13, no. 4, pp. 341-379, 2003.

[11] S. S. Mousavi, B. Ghazanfari, N. Mozayani, and M. R.

Jahed-Motlagh, “Automatic abstraction controller in

reinforcement learning agent via automata,” Applied Soft

Computing, vol. 25, pp. 118-128, 12//, 2014.

[12] G. Tesauro, "Practical issues in temporal difference

learning," Reinforcement Learning, pp. 33-53: Springer,

1992.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.

Antonoglou, D. Wierstra, and M. Riedmiller, “Playing Atari

With Deep Reinforcement Learning,” vol. NIPS Deep

Learning Workshop, 2013.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I.

Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and

D. Hassabis, “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-

533, 02/26/print, 2015.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel, “Backpropagation

Applied to Handwritten Zip Code Recognition,” Neural

Computation, vol. 1, no. 4, pp. 541-551, 1989.

[16] J. Peng, and R. J. Williams, “Incremental multi-step Q-

learning,” Machine Learning, vol. 22, no. 1-3, pp. 283-290,

1996.

[17] R. S. Sutton, A. M. David, P. S. Satinder, and Y. Mansour,

“Policy Gradient Methods for Reinforcement Learning with

Function Approximation,” pp. 1057--1063, 2000.

[18] J. N. Tsitsiklis, and B. Van Roy, “An analysis of temporal-

difference learning with function approximation,” IEEE

transactions on automatic control, vol. 42, no. 5, pp. 674-690,

1997.

[19] L.-J. Lin, “Reinforcement learning for robots using neural

networks,” Carnegie Mellon University, 1993.

[20] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,

“The arcade learning environment: an evaluation platform

for general agents,” J. Artif. Int. Res., vol. 47, no. 1, pp. 253-

279, 2013.

[21] Y. LeCun, and Y. Bengio, "Convolutional networks for

images, speech, and time series," The handbook of brain

theory and neural networks, A. A. Michael, ed., pp. 255-258:

MIT Press, 1998.

[22] T. Tieleman, and G. Hinton, Lecture 6.5 - RMSProp,

COURSERA: Neural Networks for Machine Learning,

Technical report, 2012.

[23] H. van Seijen, and R. S. Sutton, "True Online TD (lambda)."

pp. 692-700.

[24] S. J. Bradtke, and A. G. Barto, “Linear least-squares

algorithms for temporal difference learning,” Machine

Learning, vol. 22, no. 1-3, pp. 33-57, 1996.

[25] J. A. Boyan, "Least-squares temporal difference learning."

pp. 49-56.

[26] D. P. Bertsekas, and S. Ioffe, “Temporal differences-based

policy iteration and applications in neuro-dynamic

programming,” Lab. for Info. and Decision Systems Report

LIDS-P-2349, MIT, Cambridge, MA, 1996.

[27] H. Yu, "Convergence of least squares temporal difference

methods under general conditions." pp. 1207-1214.

