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ABSTRACT 

In order to accelerate the learning process in high dimensional 

reinforcement learning problems, TD methods such as Q-learning 

and Sarsa are usually combined with eligibility traces. The recently 

introduced DQN (Deep Q-Network) algorithm, which is a 

combination of Q-learning with a deep neural network, has 

achieved good performance on several games in the Atari 2600 

domain. However, the DQN training is very slow and requires too 

many time steps to converge. In this paper, we use the eligibility 

traces mechanism and propose the deep Q(λ) network algorithm. 

The proposed method provides faster learning in comparison with 

the DQN method.  Empirical results on a range of games show that 

the deep Q(λ) network significantly reduces learning time. 

Categories and Subject Descriptors 

• Computing methodologies → Sequential decision making  
 

General Terms 

Algorithms, Performance, Experimentation 

Keywords 

Reinforcement learning, Deep learning, Temporal difference 

methods, Q(λ)-learning 

1. INTRODUCTION 
Reinforcement learning [1, 2] is a suitable framework for sequential 

decision making problems where an agent makes a sequence of 

observations of its environment and make decisions based on them. 

To this end, many reinforcement learning methods have been 

developed [1, 3]. Two of the most popular and successful temporal 

difference [4] reinforcement learning algorithms are Q-learning [5] 

and Sarsa (stands for state, action, reward, state and action) [6]. The 

methods have been applied to a wide range of problems ranging 

from control and robotic problems [7] to resource allocation [8] and 

cloud computing [9]. However many real world problems have 

very large state spaces and delayed rewards i.e. high dimensional 

problems with sparse rewards. For these problems, the naïve 

structure of these methods is not very efficient. If these algorithms 

do converge, the learning process is slow and requires a large 

number of time steps. 

To deal with high dimensional reinforcement learning tasks and to 

speed up the learning process, many solutions such as hierarchical 

reinforcement learning [10, 11] and eligibility traces [3, 4] have 

been proposed. Eligibility traces are one the most commonly used 

mechanisms of reinforcement learning. The use of eligibility traces 

can significantly increase learning speed. In order to obtain this 

performance increase, a basic temporal difference (TD) method was 

combined with eligibility traces, called TD (λ) [4, 12] . Combining 

these methods bridged the gap between TD learning and Monte 

Carlo methods, thus making it possible to take advantage of the 

strength of each algorithm. The λ parameter controls after how 

many steps (e.g. n steps) the backup should be made. In fact, the 

value of λ for the eligibility traces determines the balance between 

TD and Monte Carlo methods.  

Recent research on deep learning and reinforcement learning have 

led to introduce a novel method called the deep q-network (DQN) 

[13, 14] which is a combination of the Q-learning algorithm and 

convolutional neural networks [15] which are a type of deep neural 

network. DQN has been tested within the Atari 2600 computer 

games environment. In many games the DQN’s strategy 

outperformed the human player and achieved state of the art 

performance on several games with the same network architecture 

(hyper-parameters). However, applying this method to real world 

problems, such as robotics, is very challenging. This is because 

performing a large number of training episodes to collect samples 

is resource consuming and in many cases not even possible. Other 

combinations of reinforcement learning and deep neural nets are 

therefore needed to alleviate this problem. 

One of most important extension of the simple Q-learning 

algorithm (1-step Q-learning) is Q (λ)-learning [5, 16]. Q (λ)-

learning combines Q-learning and TD(λ). The Q (λ)-learning 

algorithm performs significantly better than the naive Q-learning 

algorithm on a number of tasks [1, 4]. This is due to enhanced 

performance that eligibility traces mechanism provides i.e. 

considering a temporary history of a set of transitions such as 

previously observed states and taken actions.  

In this paper, we build on the idea of the eligibility traces, in 

particular the Q(λ)-learning algorithm. We extend this method to a 

more general setting by utilizing deep neural networks as a function 

approximation (similar to the DQN method). This deep neural 

network is used to estimate Q values in order to speed up the 

learning process. We propose a new algorithm called Deep Q(λ)-

Network (DQ(λ)N). A range of Atari 2600 games will be used as a 

testbed to evaluate the proposed DQ(λ)N algorithm. 

The rest of this article is organized as follows. In Section 2 and 3, 

we introduce the problem setting and a technical background of 

reinforcement learning and deep Q-learning, respectively. Then in 

Section 4, we present DQ(λ)N algorithm and describe how it works. 

In Section 5, we empirically demonstrate that proposed method 

performs better than DQN on a range of Atari 2600 games. Finally, 

in Section 6 we will draw conclusions based on these results. 
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2. BACKGROUND 
The goal of a reinforcement learning (RL) agent is to estimate the 

optimal policies or the optimal value function of a Markov decision 

process (MDP) in an unknown environment. If the state and action 

spaces are finite, then the problem is called a finite MDP. Similar 

to much of literature that has assumed a finite MDP environment, 

we also consider finite MDPs.  

A RL problem modelled as a Markov decision process is described 

as follows: The learning agent interacts with the environment, 

through its sensors, by performing actions and receiving 

observations and rewards. The interaction is continued until 

reaching the terminal state or a termination condition is met. A 

MDP is a five-tuple (𝑆, 𝐴, 𝛾, 𝑇, 𝑅), where 𝑆 is the set of states in the 

state space, 𝐴 is the set of actions in the action space, 0 ≤  𝛾 ≤ 1 is 

the discount factor, T is the transition function, which 𝑇(𝑠, a, 𝑠′)  

denoting the probability of  reaching next state 𝑠′ from s by taking 

action 𝑎 at time step 𝑡 and R is the reward function with R(𝑠, 𝑎) 

denoting the expected reward from taking action 𝑎 in state s at time 

step 𝑡. The aim of the learning agent is to learn an optimal policy π, 

which defines the probability of selecting action a in state s, so that 

with following the underlying policy the sum of the discounted 

rewards is over time maximized. The expected discounted return 

𝑅𝑡 at time t is defined as follows: 

𝑅𝑡 = 𝐸{𝑟𝑡, 𝛾𝑟𝑡+1, 𝛾2𝑟𝑡+2 + ⋯ } = 𝐸 [∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘]                  (1) 

Where 𝐸[. ] expectation with respect to the reward distribution and  
𝑟𝑡 ∈ ℝ  is a scalar reward obtained at step 𝑡. With regard to the 
transition function and the expected discounted immediate rewards, 
which are the essential elements for specifying dynamics of a finite 
MDP, action-value function 𝑄π(𝑠, 𝑎) is defined as follows.  

𝑄π(𝑠, 𝑎) = 𝐸π[𝑅𝑡|s𝑡 = s, a𝑡 = a] =  𝐸π[∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘|𝑠𝑡 =

s, 𝑎𝑡 = a]                 (2)                                                                                    

The action-value function 𝑄π(𝑠, 𝑎) for an agent is the expected 
return achievable by starting from state s, s ∈  S, and performing 
action a, 𝑎 ∈  𝐴 and then following policy π, where 𝜋 is a mapping 
from states to actions or distributions over actions.  

Due to the recursive property of the the equation (2), the formula can 
be rewritten as follows: 

𝑄𝑖+1
π(𝑠, 𝑎) = 𝐸π [𝑟𝑡 + 𝛾 ∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘+1|𝑠𝑡 = s, 𝑎𝑡 = a]

=  𝐸π[𝑟𝑡 + 𝛾𝑄𝑖
π(𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′)|𝑠𝑡

= s, 𝑎𝑡 = a]                                                      (3) 

 

Which is used as the update rule of the estimation of value function 
at ith iteration. 

The optimal policy, 𝜋∗, is a policy that maximizes 𝑄π(𝑠, 𝑎) and as 
a result, an optimal value function 𝑄∗(𝑠, 𝑎). An iterative update for 
estimating the optimal value function is defined as follows: 

𝑄𝑖+1(𝑠, 𝑎) =  𝐸π[𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎′𝑄𝑖(𝑠′, 𝑎′)|s, a]                         (4)                                   

Where it is implicit that s, 𝑠′ ∈ S and a, 𝑎′ ∈ A. The iteration 
converges to the optimal value function, 𝑄∗ as 𝑖 → ∞ and called 
value iteration algorithm [1].  

A well-known form of temporal difference learning [4] for 
estimating 𝑄π for a given policy π is the Q-learning algorithm, 
introduced by Watkins [5]. In many real world tasks, state and action 
spaces are too large and the use of a table of all 𝑄(𝑠, 𝑎) values (Q-
table lookup representation) is inefficient. To address this, the 
function approximation technique is utilized to estimate the value 
function [17]. Thus, the value function is parameterized 𝑄(𝑠, 𝑎; 𝜃) 
with parameter vector 𝜃. Usually gradient-descent methods are used 
to learn parameters by trying to minimize the following loss function 
of mean-squared error in Q values: 

𝐿(𝜃) = 𝐸 [(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) − 𝑄(𝑠, 𝑎; 𝜃))
2

]             (5)                                                           

Where 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) is the target value.  Typically, for 
optimizing the loss function above the  stochastic gradient descent 
method is used. Hence, in the Q-learning algorithm, the parameters 
are updated as follow:  

𝜃𝑖 =  𝜃𝑖−1 +  𝛼(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖))
𝜕𝑄(𝑠,𝑎;𝜃𝑖)

𝜕𝜃𝑖
                            (6) 

Where it is implicit that 𝑦𝑖 =  𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃𝑖−1) is the 

target value for iteration i and 𝛼 is a scalar learning rate. 

  

2.1 Q(λ)-LEARNING 
To accelerate the learning process in reinforcement learning tasks, 

TD(λ) (TD learning with eligibility traces) methods [4] are 

incorporated into the Q-learning algorithm. This results in Q(λ)-

learning method. The eligibility traces consider a temporary history 

of a set of transitions such as previously observed states and taken 

actions. In TD(λ) the backup is made after n steps not after every 

one step. The amount of n is controlled by λ 𝜖 [0, 1] parameter (e.g. 

in TD(0), the backup is made after each one step). The eligibility 

trace of each state-action pair in the process of action-value 

learning becomes large after visiting the state-action pair and 

decreases as the state-action pair is not visited. When we use 

function approximation instead of Q-table lookup to estimate Q 

values, a trace is considered for each component of the parameter 

vector 𝜃 and there is no single trace corresponding to a state [1]. 

Thus, TD(λ) updates the vector 𝜃 as follows: 

𝜃𝑖 =  𝜃𝑖−1 +  𝛼𝛿𝑖𝑒𝑖                               (7) 

Where 𝛿𝑖 =  𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖) is TD error and 𝑒𝑖 =  𝛾𝜆𝑒𝑖−1 +
𝜕𝑄(𝑠,𝑎;𝜃𝑖)

𝜕𝜃𝑖
 is its eligibility value. Note that when 𝜆 = 0, the TD(λ) 

update is the TD(0) update. 

There are two main approaches that combine the eligibility traces 

and Q-learning (i.e. to Q(λ)). These are different at dealing with 

exploratory (non-greedy) actions: First is Watkins's Q(λ) [5], where 

the eligibility traces are set to zero whenever an non-greedy action 

is taken (i.e. learning is stopped after each non-greedy action 

selected), and second is Peng's Q(λ) [16], where there is no 

difference between non-greedy and greedy actions. 

3. DEEP Q-LEARNING 
A deep Q learning Network (DQN) [13, 14] gets the benefits of 

deep learning for abstract representation in learning an optimal 

policy. The DQN algorithm incorporates a deep neural network 

function approximator with Q-learning and outputs legal action 

values for a given state. Using model-free reinforcement learning 

algorithms such as Q-learning algorithm with non-linear function  



   

Figure 1:  Three frames of 3 Atari 2600 games: Q*bert, Pong and Space Invaders, respectively. 

approximators such as neural networks, causes some instability 

issues and might lead to divergence [18]. The reasons for these 

issues are as follows: 1) Consecutive states in reinforcement 

learning tasks have correlation. 2) The underlying policy of the 

agent is changing frequently, because of slight changes in Q-values. 

To cope with these problems, the DQN provides some solutions 

which improve the performance of the algorithm significantly. For 

the problem of correlated states, DQN uses the previously proposed 

experience replay approach [19]. In this way, at each time step, the 

DQN stores the agent’s experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑟𝑡+1) into a date set 

D, where 𝑠𝑡, 𝑎𝑡 , and 𝑟𝑡 are the state, selected action and received 

reward, respectively and 𝑠𝑡+1 is the state at the next time step. To 

update the network, the DQN utilizes stochastic minibatch updates 

with uniformly random sampling from the experience replay 

memory (previous observed transitions) at training time. This 

neglects strong correlations between consecutive samples. The 

instability problem of the policy is solved with a target Q-network. 

The network is trained with the target Q-network to obtain 

consistent Q-learning targets by keeping the weight parameters 

(𝜃−) used in the Q-learning target fixed and updating them 

periodically every N steps through the parameters of the main 

network, 𝜃. The target value of the DQN is represented as follows:  

𝑦𝑖 =  𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃−
𝑖−1)                       (8) 

Where 𝜃− is parameters of the target network. 

4. DEEP Q(λ)-LEARNING (DEEP Q(λ) 

NETWORK) 
 We consider a naïve type of Watkins's Q(λ)-learning, although 

there are other variations of Q(λ) such as Peng's Q(λ), to combine 

with deep learning. The naïve type is similar to Watkins's Q(λ), but 

the eligibility traces are not set to zero on non-greedy actions. With 

regard to TD(λ) we propose the following update rule for the vector 

𝜃 of the proposed algorithm which we refer DQ(λ)N: 

 𝜃𝑖 =  𝜃𝑖−1 +  𝛼𝛿𝑡𝑒𝑡                          (9)  

𝑒𝑖 =  𝛾𝜆𝑒𝑖−1 +
𝜕𝑄(𝑠,𝑎;𝜃𝑖)

𝜕𝜃𝑖
                 (10) 

𝛿𝑖 =  𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖)                        (11) 

Where 𝑦𝑖 =  𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃−
𝑖−1) is the target value, which 

is the same as for DQN. 

Comparing the above equations with equation (7), outlines the key 
difference between the DQ(λ)N and the DQN approach. These two 
approaches are similar as they both calculate the target value using 
a target network with the weights 𝜃−

𝑖−1. The target network is 
updated based on the main network periodically. To prevent 
divergence in parameters an experience replay mechanism [19] is 
applied [14]. 

Algorithm 1 summarizes the proposed deep Q(λ)-learning method, 

where the vector e contains the trace vector for each component of 

the parameter vector 𝜃, corresponding to the eligibility traces [1]. 

For λ = 0, the algorithm is DQ(0)N that is the same as the DQN. 

Algorithm 1: Deep Q(λ)-learning 

initialize θ with random values 

initialize replay memory 𝑴 with capacity N 
for each episode repeat: 

initialize e = 0 
initialize 𝒔 
for each step in the episode repeat: 

choose action 𝒂 according to 𝜺-greedy policy 
take action 𝒂, observe reward 𝒓 and next state 𝒔′ 
store transition (𝒔, 𝒂, 𝒓, 𝒔′) in 𝑴 
𝒔 ← 𝒔′

 

𝒃 ← sample a sequence of transitions from the replay 
memory, 𝑴 
if 𝒔𝒃 (as the last state in the sequence) == terminal: 
     𝒚 ← 𝟎 
else: 
     𝒚 ← 𝒎𝒂𝒙𝒂𝑸(𝒔𝒃, 𝒂; 𝜽−) 
for each transition (𝒔𝒋, 𝒂𝒋, 𝒓𝒋, 𝒔𝒋

′) in reverse(b) repeat:   

         𝒚 ←  𝒓𝒋 + 𝜸𝒚  

𝒆 ←  𝜸𝝀𝒆 +
𝝏𝑸(𝒔𝒋,𝒂𝒋;𝜽)

𝝏𝜽
    

𝜹 ←  𝒚 − 𝑸(𝒔𝒋, 𝒂𝒋; 𝜽) 

𝜽 ←  𝜽 +  𝜶𝜹𝒆 
         until s is terminal  

 

5. EMPIRICAL RESULTS 
In this section, we present the performance results of the DQ(λ)N 

algorithm and show how it performs better than the DQN in terms 

of its rate of learning. The proposed method was evaluated on 3 

Atari 2600 games in the Arcade Learning Environment (ALE) [20].  

The ALE presents an environment that emulates the Atari 2600 

games. It provides a very challenging environment for 

reinforcement learning that has high dimensional visual input 

which is partially observable. It presents a range of interesting  



  

Figure 2: A comparison of performance of average score and steps per episode of the proposed algorithm with λ = 0.7 and the DQN 

on the game Pong. One epoch corresponds to 10 episodes and each score is an average of running an 𝝐-greedy policy, with 𝝐 = 0.05 

for 5 episosdes.

games that new methods can be tested. For our experiments we 

selected 3 Atari games: Q*bert ,Pong and Space Invaders, as shown 

in Figure 1. The goal of a RL algorithm is to learn a specific optimal 

policy to play each of the games just by using raw pixels frames as 

input. 

The network architecture that we used is similar to Mnih et al [14]. 

It contains three hidden fully convolutional layers [21] and a fully-

connected hidden layer. The output layer is a fully-connected linear 

layer with a number of output neurons corresponding to each action 

in the game. The network computes Q values of the individual 

action of the input state, where each state is a stack of 4 frames 

recently observed by the agent (to see more details refer to [14]). 

Evaluation of learned policies by the agent was conducted every 10 

episodes by running an 𝜖-greedy policy with 휀 = 0.05 for 5 episodes 

and averaging the resulting scores and steps. The networks were 

trained for 200 epochs (each epoch 10 episode considered) and the 

size of the replay memory was 500, 000. All weights of the 

networks were updated by the RMSProp optimizer [22] with a 

learning rate of 𝛼 = 0.00025 and a momentum of 0.95. The target 

network was updated after each 10000 steps. Training for all the 

games was done without changing in the network architecture and 

all hyper-parameters settings. The rest of settings were the same as 

those utilized in [14]. 

 

  
 



  

Figure 3: Th first column shows  a comparison of performance of average score per episode of the proposed algorithm and the 

DQN on Q*bert and Space Invaders games respectively. For each game, one epoch corresponds to 10 episodes and each score is an 

average of running an 𝝐-greedy policy, with 𝝐 = 0.05 for 5 episosdes.The secound column shows the average of the predicted Q per 

episode for the DQ(λ)N with λ = 0.7 and the DQN when the agent select greedy actions during training process on Q*bert and Space 

invaders games, respectively. 

5.1 Results 
In order to validate our approach we compare it with the deep Q 

network.  The results presented in Figures 2 and 3 show the 

performance results of the proposed DQ(λ)N algorithm and the 

DQN. The graphs present the average total reward and steps 

collected by the agent, also the average of the predicted Q during 

training phase on 3 games: Pong, Q*bert and Space Invaders. As 

expected, our results demonstrate the accelerated learning provided 

by the DQ(λ)N.  The left plots in Figure 2 and Figure 3 show the 

faster convergence of DQ(λ)N compared to the DQN. This is 

particularly evident in the Pong game (Figure 2), where we can see 

that the learning rate of DQ(λ)N is clearly better. In this case, it was 

revealed that the proposed method could reach the optimal average 

score approximately 1.5 times faster than the DQN and 

significantly better (paired t-test, p < 0.05) average scores were 

obtained during training period. The second metric that we consider 

is the average total steps needed per episode by an agent during 

training. The right plot of Figure 2 shows the average number of 

steps taken by DQ(λ)N agent increases in early epochs but then 

decreases to a similar number of steps as the DQN. It is evident that 

the DQ(λ)N takes more steps than the DQN. This may appear to be 

a negative feature of the proposed DQ(λ)N as a lower number of 

steps is desirable. On the contrary, we argue that this reveals a key 

advantage feature of our method. The left plot of Figure 2 

demonstrates that the algorithm is consistently progressing, in this 

case in the Pong game. Having a higher number of steps initially in 

comparison to the DQN, indicates that the DQ(λ)N has learned 

faster and tries to hit the ball to avoid of getting negative reward. 

This is why more steps are required initially for DQ(λ)N. 

As described by Mnih et al. [13] another metric for evaluating a 

reinforcement learning agent is the policy’s estimated Q value, 

which computes the received discounted reward while the agent 

follows a certain policy. The right plots of Figure 3 illustrate that 

the average predicted Q value by our method increases over time at 

a faster rate than that of the DQN. This reflects that the model is 

learning gradually in stable manner that is also significantly faster 

when compared to the DQN algorithm.  

To further analysis, a paired t-test was conducted to compare the 

received average total reward in the proposed method and the DQN 

on three Atari 2600 games: Pong, Q*bert and Space Invaders. As 

shown in Table 1, the DQ(λ)N  gave significantly higher (p < 0.05) 

average reward for each game. These results suggest that the 

proposed method can achieve more scores in the early stage of 

learning and as a result speeding up in learning process. 

Table 1: Paired t-test results comparing the DQ(λ)N and the 

DQN algorithms on the received average total reward. 

Game Number of epochs t-statistic p-value 

Pong 100 -10.064 0.000 

Q*bert 100 -2.696 0.008 

Space Invaders 100 -2.967 0.003 

 

6. CONCLUSION 
This paper proposed the combination of TD (λ) learning, in 

particular Q(λ)-learning and a deep neural network. We extended 

the DQN algorithm to take into account eligibility traces. This 

novel combination, Deep Q(λ) Network (DQ(λ)N), allowed us to 

take advantage of the DQN algorithm and the eligibility trace 

mechanism in order to further accelerate the learning process. The 

proposed method was compared to the DQN method by testing the 

algorithm on 3 Atari 2600 games. Empirical results confirm that 

DQ(λ)N can learn the satisfactory control policies in fewer number 

of trials (i.e. speeding up the learning process) in comparison to 

DQN. This was observed for all 3 games. In this work, we 

investigated one TD(λ) learning algorithm, the naïve form of  Q(λ) 

learning. A natural direction for future work would be to 

incorporate the other variations of TD(λ) [5, 6, 16, 23] or the least 

square based methods with the possibility of eligibility trace 

mechanism [24] such as the least-squares temporal difference 

(LSTD(λ)) [25], the least-squares policy evaluation (LSPE(λ)) [26, 

27], etc. into deep neural networks and establish which method 

performs best. 
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