Adaptive Agents in Minecraft: A Hybrid Paradigm
for Combining Domain Knowledge with
Reinforcement Learning

Priyam Parashar
Contextual Robotics Institute
Jacobs School of Engineering

University of California, San Diego
La Jolla, CA 92093

Abstract—We present a pilot study focused on creating flexible
Hierarchical Task Networks which can leverage Reinforcement
Learning to repair and adapt incomplete plans in the simulated
rich domain of Minecraft. This paper presents an early evaluation
of our algorithm using simulation for adaptive agents planning
in a dynamic world. Our algorithm uses an hierarchical planner
and can theoretically be used for any type of ’bot”. The main
aim of our study is to create flexible knowledge-based planners
for robots, which can leverage exploration and guide learning
more efficiently by imparting structure using domain knowledge.
Results from simulations indicate that a combined approach using
both HTN and RL is more flexible than HTN alone and more
efficient than RL alone.

Keywords—reinforcement learning, artificial intelligence, sim-
ulation, adaptive agents

I. INTRODUCTION

Hierarchical Task Networks (HTNs) have been used exten-
sively in artificial intelligence applications, specially robotics.
They have many advantages which make them a lucrative
choice for programming task-level behaviors in structured
environments. The biggest one, of course, is that by being
hierarchical they are invariant to the low-level agent con-
trollers, which enables re-use of successful plans and simplifies
programming. Furthermore, they impose a symbolic or object-
oriented structure on world, making higher-level task planning
and reasoning easier. Interestingly though this is also one
of the major flaws of HTN planner. Classic HTNs follow
a strictly structured approach towards task planning, making
them incapable of handling dynamic environments. In this
paper we experimentally show a way of making HTN plans
more flexible by introducing reinforcement learning in the
system which can learn new plan segments by exploration. The
benefit of such an approach is two-fold, reinforcement learning
helps networks learn new plans in dynamic environments and
domain knowledge helps guide reinforcement learning towards
more fruitful states for faster convergence with fewer data
samples.

The obvious question here is why is making HTNs flex-
ible an important endeavour? The short answer is because
everyday life is full of chaos and noise. The long answer
is that embodied intelligent agents are rapidly moving from
industrial sector to personal ones. Robots are being employed

Bradley Sheneman
American Family Insurance
Chicago, IL

Ashok Goel
School of Interactive Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0250

Fig. 1. A view of the Puzzle Room showing the Agent and Gold separated
by a Glass Wall

in offices, universities, hospitals, etc. to name a few places.
These environments are highly dynamic and require agents to
be more adaptable and flexible with their assumptions. Agents
which can learn, either by demonstrations or exploration, are
therefore heavily explored and favored for automating work-
flow in named domains [} [5} [6} [T8].

The reason for machine learning gaining ground is the
appeal for customization of the robot. Traditionally robots need
a very structured environment for reliable accuracy in work
which results in substantial setup time, and in some cases a
procedure overhaul, before introducing a robot to the work-
flow. This process is very different from how human workers
are expected to function. When moving from one to another
similar environment, humans tend to explore the surroundings
by actions or asking questions until they build a better mental
model. Machine learning helps robots by learning from exper-
imentation or demonstrations by non-experts which reduces
manual coding effort of experts. Reinforcement learning has
been seen as one of the most successful unsupervised methods
of learning optimal goal-directed behavior in an unknown
environment. The biggest critique of this method has been that
reinforcement learners need a substantial amount of domain
knowledge, or huge amounts of data, to efficiently understand,
manipulate and examine the world and results of actions. This
leads to an obvious marriage between the two methods outlined

above.

In this paper, we have built an artificially intelligent agent
capable of higher-level reasoning and borrowing knowledge
from known problems to solve new ones by employing a
guided reinforcement learner. We borrow our intuition from the
key concept of scaffolding in cognitive science. Scaffolding,
in its oldest definition[4], means to highlight the actions of
master or the learner which contribute more to the success of
a task. In our experiments, our agent is asked to plan course
of actions for achieving a certain goal in some scenario. The
agent has some prior knowledge of solving a similar problem
in a different situation. Our algorithm basically compares the
new situation to the most similar known problem, and uses the
differences along with domain knowledge from its knowledge
base to guide exploration of the reinforcement learner by
providing rewards or discounts for fruitful actions. As of
right now we are providing the most similar known problem
manually to the system, leaving the rest of the reasoning up-to
the algorithm.

We are exploring two key concepts here. The main hypoth-
esis is that we can use the domain-knowledge stored in HTN to
help guide RL better and speed up its learning curve. The other
hypothesis concerns focusing of attention at the right level of
detail. HTNs by definition are hierarchical and we hypothesize
that this information can help in further focusing attention
on the right actions to better explore the environment. We
elaborate this point in more detail in the approach section. We
would like to point out here that implementing this algorithm
on real embodied agents would have required substantial effort
in implementing accurate perception, manipulation, etc. While
our focus in this paper is to verify our approach and methods
first, before adding other unstable components to the pipeline.
We have therefore used simulation in this paper for verifying
our concept and evaluating the algorithm.

II. LITERATURE REVIEW

Hierarchical Task Networks have been extensively explored
in the Al research community in the last few decades, owing to
its expressivity[29], speed and efficiency in complex domains,
and invariance to lower-level mechanics of execution [9, |20,
21]]. Specifically, HTNs have been popular in robotics due
to its ability to re-use plans[30] and accurate task planning
in structured domains [[15]. Given the complexity of real-
world scenarios, the symbolic abstractions used by HTNs
can measurably speed up the planning time[30]. Apart from
manipulators, HTNs have been successfully used in improving
navigation strategies for mobile robots by reasoning on future
actions of the robot[3]]. HTNs are also discussed in human-
robot interaction community, specially human-guided learning.
Humans tend to think of tasks in a naturally hierarchical way,
and HTNs have been seen as a fitting format to learn these
representations||17]).

Reinforcement Learning (RL) [25] is a well known ma-
chine learning technique for training appropriate agent behav-
ior using the concept of rewards. The technique is influenced
by concepts from psychology where subjects, especially young
children, are rewarded for appropriate behavior and penalized
for inappropriate actions to help them learn the norms of
culture and society [2, [23]]. In machine learning, this technique

is used to provide appropriate reward to the agent depending
upon consequences of its actions. This helps the agent learn the
correct actions to be taken in different conditions or states, as
an indirect way of learning the correct cost function associated
with the environment and the task. Recently, learning game-
playing policies using only visual cues has gained much
traction in the community due to its obvious benefits in an
unstructured domain[/16].

Reinforcement Learning has also seen an increased interest
from the robotics community in the last decade. Especially it
has been observed that model-based versions of RL seem to
do exceptionally well in robotics[13]]. Trying to merge together
new knowledge with known knowledge-base is not a new
endeavour and has been extensively explored in literature.
Cognitive scientists recognize that rules coded using higher-
level knowledge can help guide lower-level actions for better
skill acquisition[24]]. In the field of AI, Murdock and Goel [19]
used model-based reasoning to localize and guide RL, while
Ulam et al [28] propose fusing RL with domain-knowledge
in video games to improve training efficiency. Other authors
have modified a flavor of HTN to calculate and update beliefs
of success for different methods, and improve re-planning by
focusing on the more successful plans[10}|14]. Hogg and Nejati
propose algorithms to create HTNs in a way such that non-
determinism is baked-into the methods by first observing task
demonstrations[11, [22]]. Minecraft platform itself is a very
new phenomenon in aiding and exploring different learning
methods in the community and [26] is an important recent
paper relevant to our mission, highlighting the versatility and
ease of use of the platform.

III. APPROACH
A. Hierarchical Task Networks

Hierarchical Task Networks (HTNs) [8, (9] are one of
the more classic approaches used in the world of planning,
especially robotics. HTNs represent the environment in terms
of a dictionary of symbolic state variables and plans. This
includes a library of primitive actions and methods. A primitive
action is the smallest unit of plan decomposition. A method is
a composite action made up of one or more ordered primitive
actions or methods. It comprises of two main attributes: pre-
conditions and effects. Pre-conditions are a set of environment
conditions conditioned on state variables which must be true
for a method to be executed. Effects are changes that the
method, if executed, would have on the environment variables.
Depending upon the goal and the state of the environment
HTNs string together these methods to build a complete plan.

In the current context, the HTN uses atomic actions like
“move forward”, “turn left/right” and “break block in focus”.
For all experiments in this paper the end-goal of the agent
remains same, which is to acquire the gold block.

B. Reinforcement Learning: Q-learning

We have implemented a tabular form of Q-learning for
our reinforcement learning purposes in this paper, using the
following update formula. s denotes a state from the table,
a denotes the action taken in state s, s’ symbolizes the next

———

Fig. 2. System Architecture

state once action a is executed and R(s, a) is the reward agent
received after executing action a while in state s.

Q(Sa a) = Q(Sva) + ok (R(S?a)+
Yk arg inaXQ(Slv a') = Q(s,a)) (1)

The states of the table vary depending upon whether the g-
learner is using domain-knowledge or not. World of Minecraft
is grid-based and the pure g-learner states consist of the
9 blocks right in front of the agent including the ground
blocks, what the agent is staring at, what is the agent holding
in its hand and agent’s pitch state, i.e. angle at which the
agent is staring. For the combination learner, we have also
provided states with a count of relevant items within a 5x5 grid
around the agent. We have used e-greedy selection strategy,
with an exponentially decaying e. After some calibration, our
implementation uses a starter € of 0.4 with a decay rate of
0.95 over 1000 iterations, a learning rate, o, of 0.55 and a vy
of 0.75. In addition, the Q-values were normalized so as to
sum to 50. The ¢ decays as per the following formula, where
decay_steps is 100 in our implementation:

iteration_step
new, = starter. * decay_rate decaystess

C. Architecture

The architecture, Figure 2] is divided into three major
components: Environment Interface, Reasoning AI and a
Meta-Reasoner. This three-layered architecture is similar to
traditional Al architectures for metareasoning [12]. The
environment interface consists of the actual game engine and
API, where agent takes actions and uses sensors to perceive
surroundings. The simulation is achieved using the rich world
of Minecraft with the help of Malmo Platformi’} The reasoning
Al is the actual planner (HTN in our case) that communicates
directly with the environment and reasons on environment
state and agent-specific variables to build and execute a plan.
We have used a stripped down python version of SHOP
called PyHoIﬂ in our implementation. The meta-reasoner is the

Ihttps://github.com/Microsoft/malmo
Zhttps://bitbucket.org/dananau/pyhop

i i
] 1
! 1

1
| . |
] M -) 1
! Environment Reasoning ' Vi Meta-reasoning Vol
i Perception 1| Agent & World/ P
| Data __Knowledge Base _ : State o
i — . ™ —_— i i

] [1

l Sensor 1| Method Memory |t i Monitor | |
| ' i ! 1 H
! : ot P
| || World Knowledge | @ ! Pl
1] i : : !
i B e co e e - ! ! H
: Sl ' ! :
! Executor — l,nr,,ﬂi,,,._,., : "IN— Learner P
! Action : ew b
! ‘ HTN ! | Knowledge | i |
| 4 P
i K s 1
i i
l :

third hidden component which communicates with the Al and
keeps track of internal processes responsible for planning and
execution with the help of internal meta-data like error flags
and execution trace of planning process. This part emulates the
process of debugging run-time error using meta-information
as well as deploying a solution just like human developers.
The solution, in our implementation, is the Learner module
which uses the information provided by meta-reasoner to setup
rewards for appropriate states for Q-learning.

D. Algorithm

As noted above in sub-section the agent is continu-
ally processing current world state with method pre-conditions
(within the Reasoning component) before en-queueing any
action execution. In a dynamic world, this is where the first
break happens. The reality is different from the expected.
This raises an error flag followed by compilation of an error
message, including level of mismatch, rest of the plan and
name of mismatched method. This information is dispatched
to the Meta-reasoner, which uses it to grab the pre-conditions
of methods queued after the mismatched method in the plan.
These states are used as intermediate states or goals for the
learner, intuition being that if the learner can find a way
to these states the planner can re-use the coded methods
to achieve the goal. Moreover, the Meta-reasoner forms a

© - © Minecraft 1.8

Fig. 3. A view of the compared rooms

comparison of current scenario to the nearest known scenario
encountered in the past which it knows the solution to (Figure

B).

This comparison helps in creating a secondary level of
rewards which is endowed on those actions which make this
scenario more like the one already known and solved. A
third layer of discounts is formed by looking at or being
near relevant items. These relevant items are defined by the
differences between current and compared scenario and the
knowledge base. Any action which leads the agent in direct
line of sight of relevant items or brings the agent near relevant
items is discounted by some amount. We are discounting the
cost, i.e. such a fruitful action costs -0.5 as compared to -1 of
normal action, and not rewarding it because we still want the
agent to maximize overall reward with minimum number of
actions. An example of fruitful action can be seen in Figure
[Once the g-values are converged above a threshold or once
the agent achieves the goal more than a threshold number of
times, this learned policy is then added to the method library
with the mismatched set of state variables as its pre-conditions.

Let us further clarify with the help of an example. Figure
O is an example of a plan proposed by the HTN for a
scenario where the agent needs to break the wall before
acquiring the gold block. During run-time though, the agent
realizes that the scenario is modified and the plan breaks
down while processing break_the_wall method. This
raises an error flag and a stack-trace is generated describing
the breakage point and the reason for breakage. Using these
messages, the meta-reasoner deduces that the pre-conditions
for break_the_wall method were not satisfied. It then
looks ahead and grabs the pre-conditions of methods queued
after the named method. Meta-reasoner then uses these grabbed
pre-conditions to generate reward states for the agent and
deploys the RL module which explores the simulated world
to learn a new method to bridge the broken plan.

IV. EXPERIMENTAL SETUP

Our experimental setup borrows from the classic “room
solving” puzzle games which required the player to solve a
level by acquiring gold or reaching the exit door by over-
coming certain obstacles. For our experiment we created three
similar puzzles with varying levels of complexity. We have
kept things relatively simple in our puzzle rooms in order to

© - © Minecraft 1.8

Fig. 4. An example of a fruitful action where the agent is directly staring at
the Glass wall

verify our concept rather than robustness of the system. As in
the classic puzzles, in this experiment the room is considered
solved when the agent successfully acquires the gold block.

Looking at the decomposition of break_the_wall
method more carefully in figure 0] we can see that not only
does this method have pre-conditions specific to execution
conditions (for example, do not trigger until agent is right
next to the wall) but it also has some inventory pre-conditions
which require the presence of certain tools for successful
action execution. There could be two scenarios here, either
that the agent was not able to successfully navigate to the
wall, say because of a ditch, or the agent did not have the
required tools to successfully execute the method. These two
problems require two completely different solutions. While the
first scenario might require learning of a whole new method to
traverse a ditch, the other only requires playing with different
tools to find a valid substitute. This is where the hierarchical
nature of HTNs helps guide the learner towards right nature
of solution. Depending upon whether the breakage was due to
new environmental conditions or agent’s limited experience
with different artifacts, the Meta-reasoner deploys different
kinds of solutions to repair the knowledge-base of the planner.

We thus created two different classes of experimental
scenarios to test the hierarchical nature of learning from our
system. One class tests the adaptability of methods, by ren-
dering an inventory-listed tool unavailable to the user forcing
the agent to improvise by learning a new tool on the fly. The
other class operates on problems one level above, changing
the world state such that none of the stored methods match
the current state, rendering a stored method invalid for our
scenario. The agent is then instructed to explore the world and
learn an alternate method to achieve its immediate goal.

A. Adapting a Known Method

Using our wall-in-the-room setup, we placed the agent and
the gold block on opposite sides of this stone wall. We first
wrote a plan in which agent uses an “iron axe” tool to first
break the wall to access the gold block. To introduce the
agent to a new situation, we changed agent’s inventory to have
a “wood axe” and “steel axe” instead. Thus everything else
remains the same except that the agent now has different tools
than the one planned for.

B. Learning a New Method

We created an environment that was new for the agent but
similar to a known scenario stored in HTN memory. We used a
simple empty-pair-of-rooms plan to solve a Puzzle Room with
a wall in the moddle, as can be seen in Figure m We want to
test if the agent can learn the full method from scratch.

C. Combination Learner Versus End-to-End Learner

Finally, we want to compare the efficiency of such an
architecture versus one which can not reason about the failure
of a plan and decides to employ an end-to-end learner which
learns a complete plan from breakage point to the final goal.
For this we create a new pipeline and run it on the same wall-
in-the-room scenario. Instead of reasoning about information
gap and learning a bridging method, this pipeline follows a
brute learning policy by employing a learner which learns a

completely new method from point of failure with its goal
as gold block acquisition. We then compare the training time
and resultant accuracy between this brute end-to-end learner
pipeline with our results from our architecture.

Require: s,: State of the Agent, s,: State of the World,
method;: Current method to be executed, htn_plan

1: procedure PLANNER()

2 while method; # @ do

3 let PC = EXTRACTPRECONDITION(method;)

4 if s,, = PC then

5: EXECUTE(method;)

6 UPDATESTATE(S,,)

7 method; < NEXTMETHOD(HTNPIan, ¢ + 1)

8 else

9: new_method < METAAI(s,, sq, htn_plan,
methody)

10: ADDNEWMETHOD(htn_plan, new_method)

11: end if

12: end while

13: end procedure

Fi

&

g. 5. Central Planning and Execution Algorithm

Require: s,, s,,, htn_plan, method;
1: procedure METAAI()
2: error_level <
FINDERRORLEVEL(htn_plan.error_msgs)
if error_level = PreconditionMismatch then
4: actions <—
EXTRACTALLACTIONS(htn_plan.library)
5: intermediate_states <—
EXTRACTPRECONDITIONS(AIl methods in htn_plan
queued after method;)

[95]

6: R(s) <~ SETUPREWARDS(intermediate_states)

7: INITIALIZE(QLearner, s,,, R(s), actions)

8: QLEARNER.ADDSTATEVARIABLE(
relevant_item_count)

9: LAUNCH(QLearner)

10: else if error_level = InventoryMismatch then

11: relevant_actions <
EXTRACTINVENTORYACTIONS(htn_plan.library)

12: intermediate_state <—
EFFECTOFMETHOD(method;)

13: R(s) + SETUPREWARDS(intermediate_state)

14: INITIALIZE(QLearner, s,,, R(s), relevant_actions)

15: LAUNCH(QLearner)

16: end if

17: end procedure

Fig. 6. Meta-reasoner Algorithm

V. OBSERVATIONS, RESULTS AND DISCUSSION

Figure 7] shows the comparison between end-to-end learner
and our combination learner for the two different method
learning scenarios. We would like to point out an interesting
observation here, when we compared HTN enriched RL agent
with pure RL agent, the pure RL agent resulted in zero
percentage of success in completing the mission over 1000
iterations. Our theory is that the proposed scenario was a
little too complicated for a simple algorithm like zero-order

Average Action Q-values per episode

Episode Number
[}
o

200 400 600 800 1000
Q-Value
Averaged Q-values over 100 episode

Episode Number
G

100 200 300 400 500 600 700 800 900 1000

Q-Value
5 040 Decaying Epsilon for Epsilon-greedy Action-selection
a ! j j j — Epsion
£ 035 =)
=z
o 0.30
o
8§ 025
= \ . . .
w 0 200 400 600 800 1000
Epsilon Value
Fig. 7. Comparing action Q-values for different approaches

tabular Q-learning to formulate. The solution required three
different actions strung in a row together without missing a
beat, which was hard for a no-memory technique to make
tractable. Therefore, the results that we show are contrasting
between pure RL enriched with room comparison rewards and
HTN enriched RL with room comparison as well as fruitful
action discounts.

As readers can see in Figure the Q-values for pure
reinforcement learning approach first take a dip before gaining
value. This is due to the agent’s repeatedly wrong or unfruitful
actions which further decrease its confidence in actions. The
topmost plot shows a considerable amount of spikes and
jumping around for the Q-values, this is because the e for
our action-selection strategy is still pretty high with a lowest
value of 0.25. This leads to execution of random actions by the
agent, but since our environment’s solution relying on a strictly
sequential series of actions even one wrong random action can
lead the agent down a rabbit-hole with no gains. The most
important results can be seen in the second subplot in the
figure, where our combination learner performs significantly
better than the pure reinforcement learner. We have used an
averaged plot of Q-values here to account for randomness
introduced by moderately high e value and to display the
comparison more clearly.

Our results are very much in line with the findings of
Ulam et al[27, 28] where they saw a considerable speed-up
of learning process by providing it with internal model and
knowledge about the game world. However, our algorithm goes
a step beyond the reactive nature of learning described in the
paper and outlines an automated way of mining out relevant
reward information from successes of the past to promote
a deliberative flavor of learning. The proposed approach is
also simpler to implement as compared to [11]] which requires
complete bottom-up construction of new plans. With memory
becoming cheap and processing power available in the cloud,
our approach holds merit with its quick learning curve. As can
be seen in Figure [§] our agent learns to stay alive for longer
quicker, in terms of number of iterations, than pure RL agent.
This is important and interesting. Such an observation indicates
that even if the agent is not yet proficient in solving the puzzle,
it has learnt the boundaries of absolute failure. This is helpful
when the sustenance of agent and prolonged exploration is key

| —— Combination Learning
—— Pure RL

N [& v
=1 =} = =}
L

Number of Moves per Episode (rolling mean)
=
o
|

T T T T T T
0 200 400 600 800 1000
Episode Number

Fig. 8. Number of Moves taken by agent per episode

to learning better solutions.

Moreover, the combination of HTN and RL ends up being
more flexible than either HTN or pure RL methods. While
classical HTNs are by nature inflexible, and reinforcement
learning being very specific to its start and end state, this
modular approach lets us re-use the small chunks of methods
in any arbitrary sequence to form a plan. The observations
of Tessler et al [26] agree with this claim. The authors have
used another hierarchical planner with an advanced flavor
of reinforcement learning in their paper which helps support
claims about generality of this combination of techniques.

We have not shown the result for first class of experiments
since it merely involved simulating same action with different
inventory items. Since we were selecting item in a randomised
manner, the efficiency, in terms of speed of finding the correct
item, was not a measurable evaluation criteria.

VI. CONCLUSION

As shown in this paper, using a dedicated diagnostic system
and a meta-reasoning component can measurably increase the
efficiency of planning systems. This is important because this
enables us to have a flexible planner capable of extending and
repairing its knowledge base. Such an ability makes it easier
for the industry and consumers to use adaptive agents which
come with pre-built domain information, ready to work out-
of-the-box as well as capable of tweaking that information as
per the changes specific to new environment. They can plan
well for the situations already seen, and can potentially learn
for new situations by exploring. This is a critical missing piece
towards enabling agents to handle open-world situations. Addi-
tionally, talking from a computation perspective, the guidance
that the HTN provides to machine learner helps scope the to-
be-explored state-space by a big factor. Such an architecture
beats end-to-end learners not only in terms of efficiency but
also flexibility, since methods can be strung together in any
order to accomplish different tasks.

VII. FUTURE WORK

Our first item of action is to evaluate this algorithm on
an actual embodied agent working in real-world scenarios.

We also plan on using richer planning languages with our
architecture, which not only are stronger at planning but also
provide better diagnostic information of the working of a
system. As we said earlier, diagnostics are the backbone of our
meta-reasoning component. Rich diagnostic messages, apart
from providing internal information, can also be leveraged
to create templated explanations to the users to elaborate the
purpose of an action. Machine learning techniques, generally,
tend to absorb patterns from data in the form of mathematical
policies and functions and usually can not explain the purpose
or reason for learnt behavior. By such a hybrid approach, we
plan to use the internal diagnostic information along with meta-
reasoning layer to be build an interactive learner which can not
only exploit exploration but also knowledge from human users
to adapt to new situations.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Brown-
ing, “A survey of robot learning from demonstration,”
Robotics and Autonomous Systems, DOIL: 10.1016/j.
robot.2008.10.024.

[2] W. C. Becker, Parents are teachers: a child management
program. 1971.

[3] T. Belker, M. Hammel, and J. Hertzberg, “Learning to
optimize mobile robot navigation based on htn plans,” in
Robotics and Automation, 2003. Proceedings. ICRA’03.
IEEE International Conference on, 1IEEE, volume 3,
2003, pages 4136-4141.

[4] L. E. Berk and A. Winsler, Scaffolding Children’s
Learning: Vygotsky and Early Childhood Education.
NAEYC Research into Practice Series. Volume 7. ERIC,
1995.

[5S] C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, and
B. Blumberg, “Learning from and about others: towards
using imitation to bootstrap the social understanding of
others by robots,” Artificial Life, 2004.

[6] C. Breazeal and B. Scassellati, “Robots that imitate hu-
mans,” Trends in cognitive sciences, volume 6, number
11, pages 481-487, 2002.

[71 M. T. Cox and A. Raja, Metareasoning: Thinking about
thinking. MIT Press, 2011.

[8] K. Erol, J. A. Hendler, and D. S. Nau, “Umcp: A sound
and complete procedure for hierarchical task-network
planning.,” in AIPS, volume 94, 1994, pages 249-254.

[9] K. Erol, J. Hendler, and D. S. Nau, “Htn planning:
Complexity and expressivity,” in AAAI, volume 94,
1994, pages 1123-1128.

[10] H. Hayashi, S. Tokura, T. Hasegawa, and F. Ozaki, “Dy-
nagent: an incremental forward-chaining htn planning
agent in dynamic domains,” 2006.

[11] C. Hogg, U. Kuter, and H. Mufioz-Avila, “Learning
hierarchical task networks for nondeterministic planning
domains,” IJCAI International Joint Conference on Ar-
tificial Intelligence, pages 1708-1714, 2009.

[12] J. K. Jones and A. K. Goel, “Perceptually grounded
self-diagnosis and self-repair of domain knowledge,”
Knowledge-Based Systems, volume 27, pages 281-301,
2012.

http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024

Solve Room

Level 1 i

Navigate to VWall }—){ Break the Wall }—){ Find Gold

Action: Search
using current
percept

v

Action: Turn
Right

Action:Break

Find Route ——» Walk T

}—){ MNavigate to Gold }—){ Acquire Gold

Action:
‘Flnd Route }—){ Walk ‘ Break

Action: Move
Forward

-

Fig. 9. Plan made for the Wall-in-the-Room Scenario by HTN Planner. Blue boxes symbolize methods and yellow boxes symbolize primitive or atomic actions.
This diagram only shows one level of expansion of the plan for explanation purposes, the blue boxes on Level 2 can still be expanded further.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement [22]
learning in robotics: a survey,” International Journal of
Robotics Research, volume 32, number 11, pages 1238—

1278, 2013. [Online]. Available: http://repository.cmu.
edu/robotics. [23]
S. Magnenat, J.-C. Chappelier, and F. Mondada, “Inte-

gration of online learning into htn planning for robotic

tasks.,” in AAAI Spring Symposium: Designing Intelli-

gent Robots, 2012. [24]
S. Magnenat, M. Voelkle, and F. Mondada, “Planner9,

a htn planner distributed on groups of miniature mo-

bile robots,” in International Conference on Intelligent [25]
Robotics and Applications, Springer, 2009, pages 1013—

1022.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I [26]
Antonoglou, D. Wierstra, and M. Riedmiller, “Playing

atari with deep reinforcement learning,” ArXiv preprint
arXiv:1312.5602, 2013.

A. Mohseni-Kabir, C. Rich, S. Chernova, C. L. Sidner,

and D. Miller, “Interactive hierarchical task learning [27]
from a single demonstration,” in Proceedings of the

Tenth Annual ACM/IEEE International Conference on
Human-Robot Interaction, ACM, 2015, pages 205-212.

J. Morimoto and K. Doya, “Acquisition of stand-up [28]
behavior by a real robot using hierarchical reinforcement
learning,” Robotics and Autonomous Systems, volume

36, pages 37-51, 2001.

J. W. Murdock and A. K. Goel, “Meta-case-based rea-

soning: Self-improvement through self-understanding,” [29]
Journal of Experimental & Theoretical Artificial Intel-
ligence, volume 20, number 1, pages 1-36, 2008.

D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock,

D. Wu, and F. Yaman, “Shop2: an htn planning system,” [30]
Journal of Artificial Intelligence Research, volume 20,

pages 379-404, 2003.

D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila, Shop:

simple hierarchical ordered planner, 1999.

N. Nejati, P. Langley, and T. Konik, “Learning hierar-
chical task networks by observation,” in Proceedings of
the 23rd international conference on Machine learning,
ACM, 2006, pages 665-672.

J. B. Sidowski, L. B. Wyckoff, and L. Tabory, “The
influence of reinforcement and punishment in a minimal
social situation.,” The Journal of Abnormal and Social
Psychology, volume 52, number 1, page 115, 1956.

R. Sun and X. Zhang, “Top-down versus bottom-up
learning in cognitive skill acquisition,” Cognitive Sys-
tems Research, volume 5, number 1, pages 63—-89, 2004.
R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction, 1. MIT press Cambridge, 1998, vol-
ume 1.

C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and
S. Mannor, “A deep hierarchical approach to lifelong
learning in minecraft,” CoRR, volume abs/1604.07255,
2016. [Online]. Available: http://arxiv.org/abs/1604.
07255.

P. Ulam, A. Goel, J. Jones, and W. Murdock, “Using
model-based reflection to guide reinforcement learning,”
Reasoning, Representation, and Learning in Computer
Games, page 107, 2005.

P. Ulam, J. Jones, and A. K. Goel, “Combining
model-based meta-reasoning and reinforcement learning
for adapting game-playing agents,” Artificial Intelli-
gence and Interactive Digital Entertainment Confer-
ence, pages 132-137, 2008.

M. Williamson, K. Decker, and K. Sycara, “Unified
information and control flow in hierarchical task net-
works,” in Proceedings of the AAAI-96 workshop on
Theories of Planning, Action, and Control, 1996.

J. Wolfe, B. Marthi, and S. Russell, “Combined task and
motion planning for mobile manipulation,” International
Conference on Automated Planning and Scheduling,

pages 254-257, 2010.

http://repository.cmu.edu/robotics
http://repository.cmu.edu/robotics
http://arxiv.org/abs/1604.07255
http://arxiv.org/abs/1604.07255

	Introduction
	Literature Review
	Approach
	Hierarchical Task Networks
	Reinforcement Learning: Q-learning
	Architecture
	Algorithm

	Experimental Setup
	Adapting a Known Method
	Learning a New Method
	Combination Learner Versus End-to-End Learner

	Observations, Results and Discussion
	Conclusion
	Future Work

