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ABSTRACT
Existing machine-learning work has shown that algorithms
can benefit from curricula—learning first on simple examples
before moving to more difficult examples. This work defines
the curriculum-design problem in the context of sequential
decision tasks, analyzes how different curricula affect agent
learning in a Sokoban-like domain, and presents results of a
user study that explores whether non-experts generate such
curricula. Our results show that 1) different curricula can
have substantial impact on training speeds while longer cur-
ricula do not always result in worse agent performance in
learning all tasks within the curricula (including the target
task), 2) more benefits of curricula can be found as the tar-
get task’s complexity increases, 3) the method for providing
reward feedback to the agent as it learns within a curricu-
lum does not change which curricula are best, 4) non-expert
users can successfully design curricula that result in better
overall agent performance than learning from scratch, even
in the absence of feedback, and 5) non-expert users can dis-
cover and follow salient principles when selecting tasks in
a curriculum. This work gives us insights into the devel-
opment of new machine-learning algorithms and interfaces
that can better accommodate machine- or human-created
curricula.
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1. INTRODUCTION
Humans acquire knowledge efficiently through a highly

organized education system, starting from simple concepts,
and then gradually generalizing to more complex ones us-
ing previously learned information. Similar ideas are ex-
ploited in animal training [16]—animals can learn much bet-
ter through progressive task shaping. Recent work [2, 9,
10] has shown that machine-learning algorithms can benefit
from a similar training strategy, called curriculum learning.
Rather than considering all training examples at once, the
training data can be introduced in a meaningful order based
on their apparent simplicity to the learner, such that the

learner can build up a more complex model step by step.
The agent will be able to learn faster on more difficult ex-
amples after it has mastered simpler examples. This training
strategy was shown to drastically affect learning speed and
generalization in supervised learning settings.

While most existing work on curriculum learning (in the
context of machine learning) focuses on developing auto-
matic methods to iteratively select training examples with
increasing difficulty tailored to the current ability of the
learner, how humans design curricula is one neglected topic.
A better understanding of the curriculum-design strategies
used by humans may help us design machine-learning al-
gorithms and interfaces that better accommodate natural
tendencies of human trainers. Another motivation for this
work is the increasing need for non-expert humans to teach
autonomous agents new skills without programming. Pub-
lished work in Interactive Reinforcement Learning [5, 7, 8,
17, 18, 24] has shown that reinforcement learning (RL) [19]
agents can successfully speed up learning using human feed-
back, demonstrating the significant role humans play in teach-
ing an agent to learn a (near-) optimal policy. As more
robots and virtual agents become deployed, the majority of
teachers will be non-experts. This work focuses on under-
standing non-expert human teachers rather than finding the
most efficient way to solve our sequential decision problem—
future work will investigate how to adapt machine-learning
algorithms to better take advantage of this type of non-
expert guidance. We believe this work is the first to explore
how non-expert humans approach designing curricula in the
context of sequential decision tasks.

In this work, we introduce and define the curriculum de-
sign problem in the context of sequential decision tasks. In
our sequential decision domain, an agent must learn tasks in
a simulated home environment. The tasks are specified via
text commands and the agent is trained with reinforcement
and punishment. The goal of a curriculum is to allow an
agent to improve learning.

We are interested in studying how different curricula affect
agent learning in our Sokoban-like test domain [12]. Existing
work [14] has shown that a multistage curriculum can speed
up learning when the final (target) task is too difficult for
the agent to learn from scratch, we aim to explore the effect
of curricula when the target task is not too hard to directly
learn. We hypothesize that more benefits of curricula could



be found as the complexity of the target task increases. We
also explore whether the best curricula change as agents are
trained differently. Our results show that:

• Different curricula can have substantial impact on train-
ing speeds while longer curricula do not always result
in worse agent performance in learning all tasks within
the curricula (including the target task).

• More benefits of curricula can be found as the target
task’s complexity increases.

• The method for providing reward feedback to the agent
as it learns within a curriculum does not change which
curricula are best.

To explore how non-experts generate curricula, we task
non-expert humans with designing a curriculum for an agent
and evaluate the curricula they produce. The user-study
results show that non-expert users can 1) successfully de-
sign curricula that result in better overall agent performance
than learning from scratch, even in the absence of feedback
on their quality, and 2) discover and follow salient principles
when selecting tasks in a curriculum. We believe these re-
sults will be useful for the design of new machine-learning
algorithms with inductive biases that favor the types of cur-
ricula non-expert human teachers use more frequently.

2. BACKGROUND AND RELATED WORK
The concept of curriculum learning was proposed by Ben-

gio et al. [2] to solve the non-convex optimization task in
machine learning more efficiently. They pointed out that
the way we define curriculum strategies leaves a lot to be
defined by human teachers. Motivated by their work, con-
sidering the case where it is hard to measure the easiness of
examples, Kumar et al. [9] developed a self-paced learning
algorithm to select a set of easy examples in each iteration,
to learn the parameters of latent variable models in ma-
chine learning tasks. Lee et al. [10] proposed a self-paced
approach to solve the visual category discovery problem by
self-selecting easier instances to discover first, gradually dis-
covering increasingly complex models. To study the teach-
ing strategies followed by humans, Khan et al. [6] conducted
behavioral studies where humans need to teach a target con-
cept with a simple 1D threshold to a robot, and showed that
human teachers follow the curriculum learning principle—
starting with extreme instances that are farther away from
the decision boundary and then gradually approaching it.

Although previous work has shown that machine-learning
algorithms can benefit from curriculum strategies, there is
limited work on curriculum learning in the context of sequen-
tial decision tasks. Wilson et al. [28] explored the problem
of multi-task RL, where the agent needed to solve a number
of Markov Decision Processes drawn from the same distri-
bution to find the optimal policy. Sutton et al. [20] extended
the idea of lifelong learning [25] to the RL setting, consider-
ing the future sequence of tasks the agent could encounter.
Both cases assume a sequence of RL tasks is presented to a
learner and the goal is to optimize over all tasks rather than
only the target task. The idea of active learning [4] was ex-
ploited in RL domains [1, 13] to actively maximize the rate
at which an agent learns its environment’s dynamics. Op-
tions learning in hierarchical reinforcement learning [26] has
also been shown to be able to enable the agent to develop
progressively more complex skills.

Of existing RL paradigms, transfer learning [22] is the
most similar to curriculum learning. The main insight be-
hind transfer learning is that knowledge learned in one or
more source tasks can be used to improve learning in one or
more related target tasks. However, in most transfer learn-
ing methods: 1) the set of source tasks is assumed to be
provided, 2) the agent knows nothing about the target tasks
when learning source tasks, and 3) the transfer of knowl-
edge is a single-step process and can be applied in simi-
lar domains. In contrast, curriculum learning aims to use
a sequence of tasks so that an agent can develop progres-
sively more complex skills and improve performance on a
pre-specified target task.

Taylor et al. [23] first showed that curricula work in RL
via transfer learning by gradually increasing the complexity
of tasks. Narvekar et al. [14] developed a number of dif-
ferent methods to automatically generate novel source tasks
for a curriculum, and showed that such curricula could be
successfully used for transfer learning in multiagent RL do-
mains. Svetlik et al. [21] proposed to use reward shaping [15]
to automatically construct effective curricula given a set
of source tasks. However, none of their work investigates
human-designed curricula. We believe non-expert users may
be able to design successful curricula by considering which
examples are“too easy”or“too hard,” similar to how humans
are taught with the zone of proximal development [27].

3. LANGUAGE LEARNING FROM HUMAN
FEEDBACK

To enable an artificial agent to effectively carry out a va-
riety of different tasks with reward and punishment, an in-
terface should connect the task learning with a language
model. In our setting, a simulated trainer could give a novel
command and reward and punish the agent until the agent
successfully completed the task. As the simulated trainer
taught additional tasks, the agent would be better at inter-
preting the language, thereby enabling the agent to success-
fully interpret and carry out novel commands without any
reward and punishment. For example, an agent might learn
the interpretation of “red” and “chair” from the command
“move the red chair,” and the interpretation of “blue” and
“bag” from the command “bring me the blue bag,” thereby
allowing correct interpretation of the novel command “bring
me the red bag.”

To enable language learning from agents trained with re-
ward and punishment, we used a probabilistic model [12]
that connected the IBM Model 2 (IBM2) language model [3]
with a factored generative model of tasks, and the goal-
directed SABL algorithm [11] for learning from feedback. In
SABL, trainer feedback is modeled as random variables that
depend on the trainer’s desired policy and the agent’s last
action. The trainer feedback model assumes that a trainer
will reward, punish, or do nothing (neutral feedback), in
response to the agent taking a correct or incorrect action,
with respect to the task they are training. Given an MDP,
an action is assumed to be correct if it is an optimal action
for the MDP in the current state, and incorrect otherwise.
In general, reinforcements under this model are more likely
when the agent selects a correct action, and punishments
are more likely when the action was incorrect. Using this
model of feedback, SABL computes and follows the maxi-
mum likelihood estimate of the trainer’s target policy given



Figure 1: The target environment #1 (command:
“move the bag to the yellow room”) used in our
study has a dog, five colored rooms and three ob-
jects (chair, bag, and backpack).

the history of actions taken and the feedback that the trainer
has provided. We adapted SABL to this goal-directed set-
ting by assuming that goals are represented by MDP reward
functions and that the agent uses a planning algorithm to
compute optimal policies for goal-based reward functions.
Then, SABL’s typical formulation of a “correct action” is re-
defined to be an action that is consistent with the optimal
policy of the true goal being trained.

4. METHODOLOGY
In this section, we first describe our sequential decision

domain for command learning. Second, we define the cur-
riculum design problem and our application of it. Third, we
discuss learning tasks in this domain.

4.1 Our Domain
Our domain is a simplified simulated home environment

of the kind shown in Figure 1. The domain consists of four
object classes: agent, room, object, and door. The visual
representation of the agent is a virtual dog, since people
are familiar with dogs being trained with reinforcement and
punishment. The agent can deterministically move one unit
in the four cardinal directions and pushes objects by mov-
ing into them. The objects are chairs, bags, backpacks, or
baskets. Rooms and objects can be red, yellow, green, blue,
and purple. Doors (shown in white in Figure 1) connect two
rooms so that the agent can move from one room to another.
Therefore, the state space in this task includes the agent’s
location; rooms’ location and color; objects’ location, color
and shape; and doors’ location. The possible commands
given to the agent include moving to a room (e.g., “move to
the red room”) and taking a specified object to a room (e.g.,
“move the red bag to the yellow room”). The agent learns
to follow these text commands via an automated trainer’s
reinforcement and punishment feedback.

4.2 Curriculum Design
In curriculum learning, the goal is to generate a sequence

of n tasks, M1,M2, . . . ,Mn, for an agent to train on. The
agent should train on these n tasks and then train on the
pre-defined target task, Mt. The curriculum is successful
if learning on task Mt is faster with the curriculum than
without it. A more difficult goal is to construct a sequence
such that training on the entire n + 1 tasks is faster than

Figure 2: The library of 16 environments is orga-
nized by the number of rooms and objects. There is
a command list for each environment.

training directly on the final task, Mt. In our setting, speed
is measured via the number of trainer feedbacks required to
learn.

In this paper, the 16 source tasks are provided.1 Each
task Mi is defined by 1) a training environment with an
initial state and 2) a text command. The library of envi-
ronments is shown in Figure 2. The 16 tasks are organized
along two dimensions: the number of rooms and the num-
ber of moveable objects. For ease of description, we number
the environments in the grid from 1 (top left) to 16 (bottom
right) in English reading order. The cross product of these
factors defines the overall complexity of the learning task,
since these factors determine how many possible tasks the
agent could execute in the environment and therefore how
much feedback an agent could require to master its task.
For example, Environment 1 has only a single possible task
while in Environment 16 the agent may need to reach one of
5 rooms with 3 possible objects. Each environment includes
a list of possible commands. For example, the possible com-
mands in Environment 5 are “move to the red room,” and
“move the bag to the red room.”

The target task command is “move the bag to the yellow
room”. It is not included for any environment to disallow
training directly on the target command. Furthermore, the
target task room layout is not in the set of 16 tasks used to
construct curricula. To study the effect of the target task’s
complexity on the performance of curricula, we design two
target task room layouts with the same command as shown
in Figure 1 and Figure 3. It is worth noting that even though
there are the same number of possible tasks the agent could
execute in these two environments, the second target task is
harder than the first one because there are more competing
hypotheses on the agent’s way to the goal state in the second
target task.

4.3 Curriculum Learning
Using the probabilistic model and a curriculum, an itera-

tive training regime proceeds as follows:

1Asking humans or agents to construct source tasks is an
interesting problem left for future work.



Figure 3: The target environment #2 (command:
“move the bag to the yellow room”) used in our
study has a dog, five colored rooms and three ob-
jects (chair, bag, and backpack).

1. The agent receives an English command.

2. From this command, a distribution over the possible
tasks for the current state of the environment is in-
ferred using Bayesian techniques.

3. This task distribution is used as a prior for the goals
in goal-directed SABL.

4. The SABL algorithm is trained for a series of time
steps using reinforcement and/or punishment feedback
given by an automated trainer.

5. After completing training2, a new posterior distribu-
tion over tasks is induced and used to update the lan-
guage model via weakly-supervised learning. After the
language model is updated, training begins on the next
task and command from the curriculum.

To study whether different methods for providing reward
feedback to the agent as it learns within a curriculum in-
fluence which curricula are best, we consider three different
automated trainers for step #4. We focus on “explicit” feed-
back, where a trainer provides positive or negative feedback,
as a proxy for trainer effort. The correct trainer provides
explicit feedback on 50% of the agent’s actions and it is
correct (reinforcement for actions consistent with optimal
policy, punishment otherwise).The error-prone trainer also
provides feedback on 50% of the agent’s actions but when
it provides feedback, it provides incorrect feedback 20% of
the time3 (and provides correct feedback 80% of the time).
The entropy-driven trainer uses the entropy of the agent’s
policy to better target its feedback. This trainer provides
feedback on 50% of the agent’s actions if the entropy (H)
of the agent’s current action selection is high (H > 0.1)
(i.e., the agent has high uncertainty in the optimal policy).
The entropy of the action selection is used to summarize the
agent’s confidence:

H = −
∑
a∈A

Pr(a = a∗|s, F ) ln(Pr(a = a∗|s, F )), (1)

where A is the set of possible actions, F is the history of
feedback events from the trainer, and Pr(a = a∗|s, F ) is the
probability that action a given state s and feedback history

2Training for a task is completed once the agent stops at the
goal state.
3Previous work in a similar setting found that a human
trainer’s error rate was roughly 20%.

Figure 4: Average feedback needed to learn (a) the
target task #1, (b) all tasks (including the target
task #1), (c) the target task #2, or (d) all tasks (in-
cluding the target task #2) on four sets of random
curricula (or no curricula) with different automated
trainers.

F is the optimal action (a∗). If the trainer provides feedback,
the feedback is correct. Actions with H ≤ 0.1 never receive
feedback4.

5. SIMULATION RESULTS
In this section, we analyze how curricula affect the number

of trainer feedbacks required to learn.

5.1 Curriculum Effects
We hypothesized that 1) curricula could reduce the amount

of feedback required to learn, 2) longer curricula would re-
duce the feedback required more than shorter curricula, and
3) feedback required could be reduced more as the target
task’s complexity increases. We generated four sets of ran-
dom curricula of lengths n = {1, 2, 3, 4}. There were 200
curricula for each of the four sets. Each curriculum was gen-
erated by randomly selecting a sequence of the 16 environ-
ments and corresponding commands from the grid, allowing
repeats. It is worth to note that the number of possible
curricula grows exponentially as the curriculum length in-
creases. There are 94 possible curricula of length 1, 94×94 =
8836 possible curricula of length 2, and so on.

Each of these 800 curricula was evaluated 20 times for
each of the three trainers and compared to directly learning
the target task. For each of the two target tasks (shown in
Figure 1 and Figure 3), we recorded the average amount of
feedback required to learn 1) in the target task, and 2) in all
tasks within the curricula (including the target task). Fig-
ure 4 summarizes these results. Error bars show standard er-

4When H ≤ 0.1, the probability of the most likely task is
> 99%, indicating a near zero-probability of an incorrect
action being taken. Trainer feedback would not help.



rors. As we expected, compared to directly learning each of
the two target tasks, all four sets of random curricula could
reduce the amount of feedback required to learn (shown in
Figure 4(a) and Figure 4(c)). Feedback required could be
reduced more in the second, harder target task than in the
first, demonstrating that more benefits of curricula could be
found as the target task’s complexity increases. We also find
that longer curricula always reduce the feedback required
more than shorter curricula in both target tasks. However,
in the harder target task, longer curricula do not always re-
sult in more feedback in total required than shorter curricula
when accounting for the feedback spent learning the curricu-
lum (shown in Figure 4(d)). This demonstrates that longer
curricula do not always result in worse agent performance
in learning all tasks within the curricula (including the tar-
get task). It is our expectation that the type of automated
trainer used does not change these results—the method for
providing feedback does not change the relative quality of
the curriculum along these metrics.

Recall that a more difficult goal of curriculum design is to
construct a sequence such that training on the entire cur-
riculum and final task is faster than training directly on the
final task. As shown in Figure 4(b), for the first target task,
none of the four sets of random curricula result in a lower
total amount of feedback required. However, Figure 4(d)
shows that for the harder target task, all four sets of random
curricula could result in a lower total amount of feedback re-
quired relative to directly learning the target task under the
correct trainer, which achieves the more difficult goal of cur-
riculum design. Unpaired two sample t-test shows that this
difference was statistically significant (p� 0.01). It implies
that as the target task’s complexity increases, we could find
more curricula resulting in faster total training time, while
improving the agent’s learning performance in the target
task. However, even for the harder target task, almost no
curricula result in a lower total amount of feedback required
under the error-prone trainer or entropy-driven trainer. We
believe the probability of receiving wrong feedback from the
error-prone trainer makes it more difficult for the agent to
fully leverage what it has learned from each task in the cur-
ricula. For the entropy-driven trainer, the number of trainer
feedbacks was minimized compared to the other two train-
ers, which makes it harder to improve.

A two-way ANOVA test on the results in Figure 4(a) and
Figure 4(c) shows that differences in the amount of feed-
back required for the agent to successfully learn each of the
two intended tasks between the three automated trainers or
four sets of random curricula were both statistically signifi-
cant (p � 0.01), verifying that different curricula can have
substantial impact on training speeds. The interaction ef-
fects of automated trainer and curriculum length on curricu-
lum quality achieved were statistically significant (p < 0.05).
Simple main effects analysis showed that the feedback differ-
ences between four sets of random curricula were significant
within each of the three trainer groups.

5.2 Transition Dynamics
When selecting tasks for a curriculum, designers can con-

struct task sequences that introduce complexity in certain
ways, which we refer to as curriculum transition dynamics.
We are interested in studying which transition type(s) is the
best or worst for minimizing the amount of feedback required
for the agent to learn the target task, or all tasks within the

Figure 5: Average feedback needed to learn (a) the
target task #1, (b) all tasks (including the target
task #1), (C) the target task #2, or (d) all tasks
(including the target task #2) on curricula with
length 2 or curricula with length 3 under the correct
trainer.

curriculum. For the 4 × 4 grid (shown in Figure 2), we
defined five different ways to change the environment com-
plexity when designing a curriculum: room transition, ob-
ject transition, combined transition, repeat transition and
others. For a given task Mi in a curriculum, a transition
to Mi+1 is a room transition if and only if the number of
rooms increases between Mi and Mi+1. If the number of
objects increases, it is an object transition, and if they both
increase it is a combined transition. If Mi = Mi+1, it is a
repeat “transition.” All other cases are considered as other
transitions.

To find which transition types result in the best agent
performance, we chose environments 1, 3, 9 and 11 (four en-
vironments with varying numbers of rooms and objects) and
evaluated all possible curricula with lengths 2 and 3 for both
target tasks, using the correct trainer. Figure 5 summarizes
these results. For curricula with length 2, we find that for
both target tasks, 1) room transitions were the best (or sec-
ond best) for minimizing the feedback required to learn all
tasks within the curricula (or the target task), and 2) com-
bined transitions were the worst for minimizing the feedback
required in the target task, while object transitions were
the worst for minimizing total feedback required in all tasks
within the curricula. For curricula with length 3, for both
target tasks, room transitions were the best for minimizing
total feedback required in all tasks, while object transitions
were the worst on both evaluation metrics. This suggests
that curricula that follow the room transitions result in con-
siderably better agent performance—in learning both the
target task and all tasks within the curricula—compared to
the curricula that make use of any other transition types.



Figure 6: Average feedback needed to learn (a) the
target task #2 or (b) all tasks (including the target
task #2) with and without human-designed curric-
ula.

6. HUMAN SUBJECTS RESULTS
To study whether non-expert humans (i.e., workers on

Amazon Mechanical Turk) can design good curricula for an
agent, we developed an empirical study in which partici-
pants were asked to design a set of training assignments for
the dog to help it quickly learn to complete the final target
assignment.

6.1 Design
First, participants had to pass a color blindness test. Sec-

ond, participants filled out a background survey. Third, par-
ticipants were taken through a tutorial that 1) walked them
through two examples of the dog being trained to help them
understand how the dog learns to complete a novel command
successfully using reinforcement and punishment feedback,
and 2) taught them how to use the interface to design a cur-
riculum for the dog. Participants were told that 1) their goal
is to design a set of assignments for the dog to train on such
that the dog can quickly learn to complete the final target
assignment, 2) they can observe the whole process of the
dog being trained in each assignment in their designed cur-
riculum and the target assignment, and 3) higher payment
would be given to them if a better curriculum was designed.

Following the tutorial, participants selected environments
and commands from the 16-environment grid (Figure 2) in
any order to design their own curricula. The target task
(Figure 3) is shown on the right side of the screen to re-
mind participants of the goal for the designed curricula.
We choose the second target task to better explore whether
non-expert humans can design good curricula for improv-
ing agent learning in the harder final task. Upon finishing
designing a curriculum (containing at least one task), par-
ticipants could watch the automated (correct) trainer teach
the entire curriculum. Participants were required to redesign
the curriculum at least once.

6.2 Experimental Setup
To study the effect of the ordering of source tasks on hu-

man performance in designing curricula, we varied the order
of the 16 environments in the grid. We transposed the grid,
swapping Environments 1 and 16, 2 and 12, etc., such that
the difficulty level of the environments gradually decreases
from left to right, and top to bottom. Participants were
randomly assigned to an experimental condition:

Figure 7: Average feedback needed to learn (a) the
target task #2 or (b) all tasks (including the target
task) with random and human-designed curricula.

• Gradually Complex: the number of rooms increases
from left to right, and the number of objects increases
from top to bottom.

• Gradually Simple: the number of rooms decreases
from top to bottom, and the number of objects de-
creases from left to right.

6.3 Results
This section summarizes our user-study results. Our ex-

periment was published on Amazon Mechanical Turk as a
set of Human Intelligence Tasks. We considered data from
80 unique workers, after excluding 15 responses who we iden-
tified as users who just submitted as fast as possible so as to
be paid. We identified such users as those whose completion
time was shorter than 5 minutes (the average completion
time was 22 minutes 18 seconds, with a standard deviation
of 8.3 minutes) or if both designed curricula contained only
a single task. There were 40 participants for each experi-
mental condition (gradually complex and gradually simple).
Each participant only saw one grid type when designing cur-
ricula.

6.3.1 Participant Performance
Recall that the objective of the curriculum design prob-

lem in sequential decision tasks is to design a curriculum the
agent would train on such that the agent could successfully
complete its target task quickly and with little feedback.
Therefore, we first examined whether users could success-
fully design such curricula by computing the average amount
of feedback needed for the agent to learn the target task af-
ter being trained on all initial and final curricula designed by
them. Recall that all users had to provide at least two cur-
ricula, but we evaluated only the initial and final curricula.
Each curriculum was evaluated 20 times.

Figure 6(a) shows that, compared to directly learning the
target task #2, less feedback was required for the agent to
master the intended task after training on curricula, un-
der all three automated trainers. Figure 6(b) shows that
less feedback in total was required for the agent to learn
all tasks within the curricula (including the target task #2)
than only learning the target task under the correct trainer,
which achieves the more difficult goal of curriculum learning.
It is also worth noting that participants were not given any
feedback on the quality of the curricula they created. A two-
way ANOVA test shows that the differences in the amount
of feedback required to learn the target task between us-



ing the curricula or not using the curricula were statistically
significant (p � 0.01). The feedback differences between
the three automated trainers were also statistically signifi-
cant (p� 0.01). The interaction effects of these two factors
on curriculum quality achieved were statistically significant
(p < 0.05). Simple main effects analysis showed that signif-
icantly less feedback was required for the agent to master
the intended task after training on curricula than learning
from scratch within each of the three trainer groups.

To study whether non-expert humans can design good cur-
ricula, we compared the average amount of feedback needed
for the agent to learn 1) the target task, and 2) all tasks
(including the target task) after being trained on all ini-
tial and final curricula designed by humans and on all four
sets of random curricula (shown in Figure 7). The result
shows that human-designed curricula result in 1) less feed-
back required for the agent to master the intended task,
and 2) more feedback in total required for the agent to learn
all tasks (including the target task) than random curricula,
demonstrating that non-expert humans are good at design-
ing curricula in terms of improving the agent performance
in learning the target task in this sequential decision task
domain.

6.3.2 Transition Dynamics
We then examined the overall quality of the curricula rel-

ative to those we found during our previous exploration of
machine-generated curricula.

We analyzed the most popular transitions in the two ex-
perimental conditions by computing the frequency of each
of five transitions being followed for each environment. We
found that 1) the room transition was the most-frequently
used transition in the gradually complex condition, which
was the best transition type we found before for curricula
with length 2 or 3 in both target tasks, 2) the other transi-
tion was the most-frequently used transition in the gradually
simple condition, which was shown to be better than object
or combined transition for curricula with length 2 or 3 in
both target tasks, and 3) the combined transition was the
least-frequently used transition in both experimental con-
ditions, which was the worst for minimizing the feedback
required in the target task for curricula with length 2 in
both target tasks. Thus, non-expert users can generate effi-
cient curricula that include useful transition types. A Chi-
squared test showed that the transition types used between
the two experimental conditions were significantly different
(p� 0.01), demonstrating that the ordering of source envi-
ronments affected the way participants chose to design cur-
ricula.

We then examined the overall agent performance in learn-
ing both the target task and all tasks within the curricula in
these two experimental conditions. We found that the cur-
ricula designed in these two experimental conditions result
in similar agent performance on these two evaluation met-
rics, demonstrating that the ordering of source environments
does not affect human performance in designing curricula for
the agent to train on.

6.3.3 Environment Preference
We hypothesized that some source environments in the

grid would be preferred by users when designing their curric-
ula. Analyzing the properties of these environments might
enrich the general principles regarding efficient curricula and

Figure 8: The probability of each environment be-
ing included in a human-generated curriculum from
both conditions. The purple circle represents the
overlap.

inspire the development of new machine-learning algorithms
that accommodate human teaching strategies. Therefore,
we explored user preference in each environment by com-
puting the fraction of users who selected corresponding en-
vironments at least once.

Figure 8 summarizes user preference in each of the 16 en-
vironments when designing initial or final curricula in two
experimental conditions. The environments are shown in
the same order as the gradually complex condition. A larger
dot represents a higher probability of the corresponding en-
vironment being chosen. We find that when designing initial
curricula, users were more likely to select 1) Environments 1,
2, 6, 12, and 16 in the gradually complex condition, and 2)
Environments 1, 12, and 16 in the gradually simple condi-
tion. This finding implies that users preferred to choose 1)
the simplest environments that only contain one important
concept (Environments 1 and 2 are the two simplest ones
that refer to a yellow room, and Environment 6 is one of
the two simplest ones that include an object) that the agent
needed to learn for the target task, and 2) more complex en-
vironments that are more similar to the target environment.
(Environments 12 and 16 are two of the most similar ones
to the target environment.)

We also note that users had a similar probability of choos-
ing the two simplest environments (1 and 2) after varying
the order of the 16 environments. Fisher’s exact test shows



that the frequency of each of the 16 environments being
selected by users for initial or final curricula was not signif-
icantly different (p > 0.05) between the two experimental
conditions, suggesting that the ordering of source environ-
ments does not influence participants’ preference in choosing
environments. We believe that savvy users prefer 1) isolat-
ing complexity, 2) selecting the simplest environments they
can to introduce one complexity at a time, 3) choosing en-
vironments that are most similar to the target environment,
and 4) introducing complexity by building on previous tasks
rather than backtracking to introduce a new type of com-
plexity. These principles can be highly useful for the design
of new machine-learning algorithms that accommodate hu-
man teaching strategies.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced and defined the curriculum

design problem in the context of sequential decision tasks,
where the goal is to design a sequence of source tasks for
an agent to train on such that the agent can complete a
pre-specified target task quickly with minimal explicit feed-
back. We analyzed how different curricula influence agent
learning in a Sokoban-like household domain. Our results
show that 1) the choice of curriculum can have substantial
impact on training speeds while longer curricula do not al-
ways result in worse agent performance in learning all tasks
within the curricula (including the target task), 2) more
benefits of curricula can be found as the target task’s com-
plexity increases, and 3) the method for providing reward
feedback to the agent as it learns within a curriculum does
not change which curricula are best. We also present an
empirical study designed to explore how non-expert humans
generate such curricula. We demonstrated that non-expert
users can 1) successfully design curricula that result in bet-
ter overall agent performance than learning from scratch,
even in the absence of feedback on their quality, and 2) dis-
cover and follow some salient patterns when selecting and
sequencing environments in the curricula—an attribute we
plan to leverage in the design of RL algorithms in the future.

Considering that the tasks in real world could be harder,
we can speculate on ways of generalizing our findings to more
complex task domains. First, given the finding that the re-
ward feedback strategy does not change which curricula are
best, we could choose the feedback strategy that minimizes
the number of actions needed for the agent to complete the
more complex task (e.g., robot navigation tasks), where the
training time is an important performance metric. Second,
we could incorporate the salient principles (e.g., isolating
complexity) we find about humans when designing curric-
ula into the automatic process of generating useful source
tasks in any task domain. We could also build new learning
algorithms with inductive biases that favor the types of cur-
ricular changes that human trainers tend to use. Finally, the
interface design could be improved to guide the non-experts
to design better curricula.

Future work will study curriculum design 1) when users
can create a sequence of novel source tasks for the agent to
train on, and 2) when users can see a score of the designed
curricula and use this feedback in their design process, and
3) when the learning algorithm is able to leverage patterns
used by non-expert curricula designers.
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