
Developing a Python Reinforcement Learning Library for
Traffic Simulation

Gabriel de O. Ramos
Instituto de Informática

Universidade Federal do
Rio Grande do Sul

Porto Alegre, RS, Brazil
goramos@inf.ufrgs.br

Liza Lunardi Lemos
Instituto de Informática

Universidade Federal do
Rio Grande do Sul

Porto Alegre, RS, Brazil
lllemos@inf.ufrgs.br

Ana L. C. Bazzan
Instituto de Informática

Universidade Federal do
Rio Grande do Sul

Porto Alegre, RS, Brazil
bazzan@inf.ufrgs.br

ABSTRACT
Evaluating multiagent reinforcement learning (MARL) ap-
proaches in real world problems, such as traffic, is a challeng-
ing task. In general, such approaches cannot be deployed
before extensive validation. Hence, simulating the impact
of these approaches represents an essential step towards its
deployment. Existing MARL tools make this process eas-
ier by simulating real world scenarios. However, no such
framework simulates traffic with the required level of detail.
Alternatively, one may consider hand-coding such simula-
tions. Nonetheless, this adds another complexity layer to
the process. In this paper, we introduce PyRL, a Python
Reinforcement Learning Library that facilitates the devel-
opment and validation of MARL techniques. PyRL imple-
ments well-known RL algorithms and validation scenarios.
Additionally, in contrast to existing tools, PyRL delivers de-
tailed traffic scenarios through the SUMO traffic simulator.
Moreover, PyRL can be more easily extended than existing
tools. In short, PyRL simplifies the validation of MARL ap-
proaches (especially in traffic scenarios), requiring little pro-
gramming efforts and speeding up the setup of experiments.

CCS Concepts
•Computing methodologies→Modeling and simula-
tion; Multi-agent reinforcement learning; •Applied
computing → Transportation; •Software and its engi-
neering → Development frameworks and environments;

Keywords
reinforcement learning, multiagent, Python, library, traffic,
simulation

1. INTRODUCTION
The development and evaluation of multiagent reinforce-

ment learning (MARL) techniques in real world problems
is far from trivial. Such a task involves simulating an en-
vironment’s dynamics as well as the agents’ behaviour and
interactions [19, 20]. Nevertheless, MARL has been success-
fully applied to (and delivered promising results in) several
domains, such as traffic [3], smart grids [17], robotics [8],
among others [13].

A particularly relevant domain is that of traffic. It is well
known that traffic issues are faced everyday even in small
cities. As such, traffic has drawn special attention from the
Artificial Intelligence community. In particular, given its

distributed and selfish nature, traffic has shown an interest-
ing testbed for MARL algorithms. However, an important
aspect to consider here refers to the way such scenarios are
validated. In general, the deployment of new technologies
in traffic domains is only attainable after extensive experi-
mentation. Thus, traffic simulation emerges as a safe and
economically efficient way of validating such scenarios. Here,
one needs to model drivers’ behaviour and to simulate vehi-
cles within the road network. A representative tool here is
the SUMO simulator1, which models the system at a micro-
scopic level, i.e., even the vehicles’ position and speed are
simulated. We refer the reader to Bazzan and Klügl [4] for a
more detailed overview of agents in traffic and its simulation.

Regardless of the problem being addressed (and of the way
it is simulated), however, the most important aspect here
refers to putting the RL algorithms into the agents. On the
one hand, the most straightforward approach is to hand-code
the algorithm and the environment (or an abstract repre-
sentation of the environment). However, such requirements
make the validation process inefficient and slow. Addition-
ally, code reusing is not always attainable. On the other
hand, existing libraries make this process easier by provid-
ing algorithms and validation scenarios. Notwithstanding,
no such library models traffic with the required level of de-
tail. Furthermore, extending such libraries to work with
realistic traffic environments (e.g., using the SUMO simula-
tor) is not a simple process.

In this paper, we go beyond existing RL libraries and
introduce PyRL – a Python Reinforcement Learning Li-
brary2. PyRL is focused on facilitating the development
and validation of (MA)RL techniques. Specifically, PyRL
includes implementations of well-known RL algorithms (e.g.,
Q-learning, WPL) and validation scenarios (e.g., normal
form games, cliff walking). The validation scenarios (or,
as called, environments) are modelled as Markov Decision
Processes (MDP) [19], which are compatible with the im-
plemented RL algorithms. In contrast to other libraries,
PyRL also includes traffic environments (simulated using
SUMO), which allows for the validation of MARL algorithms
in highly detailed traffic simulations. In short, PyRL enables
code reuse, has little programming efforts and speeds up the
setup of experiments.

We remark that PyRL is still under development. In spite
of that, PyRL is a powerful tool for developing and validat-
ing MARL approaches, especially in traffic scenarios. PyRL

1https://www.sumo.dlr.de/
2https://github.com/goramos/pyrl



is written in Python and has SciPy3 as its main depen-
dence. As for the traffic environments, PyRL also requires
the SUMO simulator and the py_expression_eval4 library.

This paper is structured as follows. Alternatives to PyRL
are presented in Section 2. Section 3 details PyRL’s ar-
chitecture. Examples on how to use and extend PyRL are
discussed in Sections 4 and 5, respectively. Final remarks
are presented in Section 6.

2. RELATED TOOLS
In this section we review some of the alternatives to PyRL

and discuss their drawbacks. Recall that the objective of
PyRL is to enable simpler and faster validation of (mul-
tiagent) RL algorithms in different scenarios, especially in
traffic. The most straightforward alternative to PyRL refers
to hand-coding algorithms and experiments from scratch.
However, this is a time-consuming task, which requires ex-
tensive verification and is subject to failures. Moreover, this
approach neglects code reusability.

Existing RL frameworks represent another alternative to
PyRL. An interesting one is the Reinforcement-Learning-
Toolkit [18], which comprises a collection of RL algorithms
and demos. However, algorithms and scenarios are not inde-
pendent modules, but part of a single code. Consequently,
changing an algorithm or scenario may be complex. In fact,
such a toolkit would be better defined as a set of RL exam-
ples than an RL library itself.

Another relevant tool is OpenAI Gym [6], which provides
several environments for testing an RL algorithm. The fo-
cus of OpenAI Gym is on testing and comparing RL algo-
rithms and making the results publicly available. As such,
OpenAI Gym only provides the environments, not the al-
gorithms. The lack of algorithms is the main limitation of
OpenAI Gym as compared to PyRL. In fact, implementing
state-of-the-art algorithms is frequently far from trivial. Ad-
ditionally, no traffic scenario is provided with OpenAI Gym.

A final worth mentioning tool is PyBrain [16], a machine
learning library that also includes RL algorithms and prob-
lems. In terms of functionality, PyBrain is similar to PyRL.
Both PyBrain and PyRL can be extended with additional
modules, though PyBrain includes more algorithms and sce-
narios natively. However, PyBrain’s code is overly modu-
larised, making the inclusion of new algorithms and envi-
ronments more difficult than in PyRL.

As seen, existing tools and libraries do not achieve the
same level of extensibility as PyRL does. Moreover, PyRL
is the only RL library with native integration with a traf-
fic simulation tool (i.e., SUMO simulator). Although the
other platforms can be extended with traffic scenarios, this
is not a trivial task and may involve extensive validation.
Hence, PyRL represents one of the easiest and fastest ways
of validating RL approaches in traffic domains.

3. ARCHITECTURE
PyRL simulates a reinforcement learning problem through

abstractions of its environment and agents. The basic struc-
ture of PyRL is depicted in Figure 1, where Environment

models the problem under consideration and Learner mod-
els a learning agent that interacts with the environment.
PyRL provides a few different environments and learning

3https://www.scipy.org/
4https://github.com/Axiacore/py-expression-eval

Figure 1: Diagram of PyRL’s components and their
interaction.

algorithms. The environment is represented as an MDP,
which can be simulated internally or externally (e.g., us-
ing a third-party simulator). For instance, the simulation of
traffic scenarios in PyRL is performed using the SUMO sim-
ulator. An environment supports one or more agents. Each
agent is an instance of the Learner class, which implements a
reinforcement learning algorithm. The ExplorationStrat-

egy class provides exploration strategies to be used by the
learning algorithms. More details on each of these classes
are presented in the next subsections.

The basic steps for setting up a PyRL simulation are as
follows. Firstly, an environment must be instantiated and its
parameters defined. Secondly, the agents must be instanti-
ated together with its parameters and exploration strategy.
Finally, the simulation can be run for any given number of
episodes. The main advantage of PyRL over hand-coding
an experiment from scratch (e.g., implementing an environ-
ment and a learning algorithm) is that once an Environment

and a Learner are created, they can be used with any other
available PyRL module with little effort. Examples on how
to extend PyRL are presented in Section 5.

3.1 Environment Class
The Environment class models a reinforcement learning

problem by means of an MDP. Specifically, it provides the
abstract implementation of an MDP and the methods re-
quired for controlling and interacting with it. Observe that
Environment only provides the abstract structure required
by all PyRL environments. An environment itself and the
corresponding MDP are implemented through a subclass of
Environment. In other words, the states, actions, transi-
tions and rewards of the MDP are only implemented in the
child class. In order to create an environment, the following
abstract methods must be implemented:

• __init__(self): initialises the attributes of the en-
vironment, including a data structure for representing
the MDP.

• get_state_actions(self, state): returns the set of
actions available in the specified state.

• run_episode(self, max_steps): runs a complete sim-
ulation episode (or up to max_steps). The episode du-
ration (number of steps) depends on the problem being
modelled.

• run_step(self): runs a single step within an episode.
In a step, all agents choose their actions and receive
the corresponding rewards.



Whenever an environment is instantiated, its __init__

method initialises its attributes and creates the internal rep-
resentation of the MDP. The same is done with the agents
(as shown next, in Section 3.2). The Environment super-
class keeps a list with the agents working on it. This list
is updated with the register_learner method, which is
called by each agent once created. The get_state_actions

method enables the agents to observe the set of actions avail-
able in a given state. This method is specially useful when
the agents are exploring unknown states.

The run_episode method is responsible for controlling a
complete episode of the simulation. As such, it runs an step
for the specified number of times, or up to a point where all
agents have reached their goals. The run_step method is
more specific, and implements the interaction of the agents
with the environment on each simulation step. Precisely, it
processes the agents’ actions, computes the current state of
the world, and then provides the corresponding reward to
the agents. This is the basic flow of an RL problem.

In the current version of PyRL, the following environ-
ments are available:

• CliffWalking: a single-agent, 4x12 grid-world envi-
ronment [19]. The agent starts in the lower left cor-
ner (starting state) and must cross the environment
to reach the lower right corner (goal state). However,
there is a cliff between the starting and goal states,
which should be avoided by the agent. The MDP is
modelled as follows. Each grid cell represents a state.
In each state, the agent can move in four directions:
right, left, up, and down (some movements have no
effect in edge states). Each visited state incurs a re-
ward of -1, except for the cliff and goal states (a.k.a.
ending states), which incur a reward of -100 and +100,
respectively. Transitions are deterministic, i.e., the ac-
tion taken is always the actually chosen one.

• TwoPlayerTwoAction: a generalisation of two-player-
two-action normal form games [9]. This class provides
some classic games (such as prisoners dilemma, match-
ing pennies, coordination game, battle of the sexes)
and allow the creation of user-defined ones as well.
The game to be used must be specified at the time of
instantiation.

• SUMO: a multiagent traffic scenario simulated using the
SUMO simulator. In this scenario, each agent has an
origin and a destination, and must find a route that
minimises its travel cost. The road network follows
the SUMO specification and must be specified at the
time of instantiation. The MDP is modelled as follows.
States are intersections. The actions in a particular
intersection correspond to its outgoing roads. Transi-
tions are deterministic. The reward for crossing a road
is its negative travel time (i.e., a travel time of 10 is
interpreted as -10 reward). Observe that the agents
do not know their routes a priori here, i.e., they must
learn their route link-by-link.

• SUMORouteChoice: another multiagent traffic scenario
simulated with SUMO. As opposed to the SUMO envi-
ronment, here the agents know their routes a priori.
As for the SUMO environment, the road network follows
the simulator specification and must be specified at the
time of instantiation. This scenario is modelled as a

stateless MDP. The actions of an agent correspond to
the available routes between its origin and destination.
Again, transitions are deterministic and the reward for
crossing a route corresponds to its negative travel time.

3.2 Learner Class
The Learner class models an agent by means of a re-

inforcement learning algorithm. Basically, it provides ab-
stract methods for acting in the environment and receiving
feedback from it. As for the Environment class, Learner

only provides the abstract structure required by all PyRL
learners. Any RL agent is then modelled as a subclass of
Learner. The following abstract methods are provided with
the Learner class:

• __init__(self): initialises the learner’s attributes,
including those of the learning algorithm (such as the
Q-table, in the case of Q-learning).

• act(self, state, available_actions): chooses and
returns the action to be taken by the agent in its cur-
rent state. The way such decision is made depends
on the algorithm being implemented and may employ
an ExplorationStrategy. The current state and cor-
responding actions may be received as parameters, if
necessary. This method is divided into five parts (act1,
act2, act3, act4, and act_last) to ensure agents are
synchronised, if needed (it may be necessary when the
agents communicate to each other).

• feedback(self, reward, new_state, prev_state,

prev_action): receives the reward corresponding to
the action chosen in act. Such reward is used to up-
date the agent’s knowledge in accordance with the cor-
responding RL algorithm. This method is divided into
four parts (i.e., feedback1, feedback2, feedback3, and
feedback_last) following the same reasoning of the
act method.

The __init__ method is called once, when the agent is
created. Here, the agent registers to the environment by call-
ing the register_learner method (as seen in Section 3.1).
Afterwards, the agent builds its internal representation of
the MDP by calling the environment’s get_state_actions

method. In general, the agent can only observe the actions
on its current state. As such, the agent’s internal representa-
tion of the MDP is built progressively, as the agent explores
the environment.

The most important methods of a Learner are the act and
feedback ones. At every step of an episode, the agent can
select an action based on its current state and knowledge.
The act method is responsible for choosing such an action
and returning it to the environment. The action here may
be chosen using an ExplorationStrategy (more details in
Section 3.3) or an internal procedure. Afterwards, the en-
vironment provides a reward to the agents by calling the
agents’ feedback methods. These methods use the received
reward to update the agents’ experience (e.g., updating the
Q-table in the case o Q-learning). Observe that multiple
act and feedback methods are available. The idea here is
to synchronise the agents at specific decision points while
acting or receiving feedback. For instance, algorithms that
employ some kind of communication among the agents may
require that, before making a final decision, all agents have
made an intermediate decision. In this case, if the agents are



not synchronised (e.g., if some of them have not made the
intermediate decision), then the decision process may fail.
To this regard, PyRL synchronises the agents by ensuring
that all agents finish an act/feedback procedure (e.g., act1)
before calling the next one (e.g., act2).

In the current version of PyRL, the following Learner

classes are provided:

• QLeaner: uses the traditional Q-learning algorithm [21].

• WPL: implements Weighted Policy Learner [1], which is
a gradient ascent learning algorithm.

• OPPORTUNE: based on the OPPORTUNE algorithm [12],
in which agents communicate to coordinate their ac-
tions.

3.3 ExplorationStrategy Class
The ExplorationStrategy class models an action selec-

tion mechanism for balancing exploration and exploitation.
Specifically, it provides the choose method, which receives a
set of actions and their expected values (e.g., Q-values) and
chooses a single action based on specific criteria.

The current version of PyRL delivers the following action
selection strategies (we refer the reader to [19] for more de-
tails on these strategies):

• EpsilonGreedy: implements the ε-greedy exploration
strategy. Here, a random action is chosen with proba-
bility ε and a greedy (with highest Q-value) one with
probability 1− ε.

• Boltzmann: implements a soft-max action selection
mechanism using the Boltzmann distribution. Here,
the probability of an action is proportional to its value.
Exploration and exploitation are balanced by means of
parameter τ .

4. EXAMPLES OF USE
In this section we present two examples on how to setup an

experiment in PyRL. We start with the classic cliff walking
scenario (Section 4.1) and then present a traffic scenario
example (Section 4.2).

4.1 Example 1: Cliff Walking
The cliff walking example is a single-agent, grid-world en-

vironment. Figure 2 presents the algorithm required for cre-
ating the example. The environment itself is created in line
2 and requires no additional parameters. An ε-greedy ex-
ploration strategy is defined in line 5, with ε starting with
value 1.0 and being multiplied by a decay rate of 0.99 after
each episode. A Q-learning agent is defined in lines 8 and 9.
The agent is defined with a learning rate α = 0.3, a discount
factor γ = 0.9, and the exploration strategy defined in line 5.
The agent’s starting and ending states are also specified in
the parameters to better control the end of the simulation.
Finally, after all elements have been created, the simulation
can be started. In lines 12 and 13, the simulation is run for
1,000 episodes. The basic output of this simulation is the re-
ward of the agent along episodes, though other metrics can
also be generated. Therefore, as seen in Figure 2, setting up
a cliff walking example is simple and requires little effort.

1 # create a cliff walking environment
2 env = CliffWalking()
3

4 # define an exploration strategy
5 exp = EpsilonGreedy(1, 0.99)
6

7 # create a Q-learner
8 lrn = QLearner('A1', env, env.get_starting_state(),
9 env.get_goal_state(), 0.3, 0.9, exp)

10

11 # run 1,000 episodes
12 for i in xrange(1000):
13 env.run_episode()

Figure 2: Example of a Q-learning agent within the
classic cliff walking scenario.

1 # create a SUMO environment
2 env = SUMO('network.sumocfg', 8813, True)
3

4 # create a WPL learner for each vehicle
5 learners = []
6 for vID in env.get_vehicles_ID_list():
7 vDic = env.get_vehicle_dict(vehID)
8 learners.append(WPL(vID, env, vDic['origin'],
9 vDic['destination']))

10

11 # run 100 episodes
12 for _ in xrange(100):
13 env.run_episode(50000)

Figure 3: Example of WPL agents that must find
their routes within a SUMO environment.

4.2 Example 2: Traffic Scenario
As for the traffic scenario, we present an example using the

SUMO environment. This is a multiagent scenario, in which
each agent must find a route that minimises the travel cost
between its origin and destination. Observe that the agents
do not know their routes a priori here. Hence, the agents
may face cycles in their routes, especially in the beginning of
the simulation. However, cycles tend to disappear as agents
become experienced.

The algorithm required for creating and running a SUMO

experiment is shown in Figure 3. The SUMO environment is
created in line 2 of the algorithm, where ‘network.sumocfg’
represents a SUMO file (which defines the road network and
other aspects of the simulation), 8813 is the port through
which PyRL must communicate with SUMO simulator, and
True means that a graphical interface (of the simulation)
should be displayed. For each vehicle within the scenario
(line 6), a WPL agent is defined and stored in a list (lines
8 and 9). The vehicles’ properties (e.g., origin, destination)
are obtained from the environment (as in line 7). No explo-
ration strategy was specified for the WPL because it uses
an internal probability vector for choosing actions. Finally,
once all elements of the scenario have been created, the sim-
ulation can be started. In lines 12–13, the simulation is run
for 100 episodes. The parameter used in the run_episode

method specifies that the simulation must be halted after
50,000 steps (this is especially useful in the first episodes,
where the agents have little experience and may get stuck in
cycles). The basic output of this simulation is the average
travel time of the agents along episodes, though other met-



rics can also be generated. As seen, PyRL facilitates the val-
idation of RL algorithms in traffic settings, making it simple
and straightforward. We remark that, even though a SUMO

environment is much more complex than a CliffWalking

one, the programming efforts required for setting up both
environments is almost the same.

5. EXTENDING PYRL
We recall that PyRL is still under development. As such,

only a few RL algorithms and validation scenarios are avail-
able. However, new modules are being developed for PyRL.
Furthermore, PyRL can be easily extended with additional
Environment, Learner and ExplorationStrategy modules.
In fact, the ease of extending PyRL is one of its main advan-
tages over PyBrain. Although PyBrain has more algorithms
and validation scenarios than PyRL, extending it is more
difficult because its code is excessively modularised. In this
section, we present two simple examples on how to build a
Learner and an Environment from scratch.

Our example consists in a stateless SimpleEnv environ-
ment with two actions actA and actB. The reward on actA

is always 1.0 and on actB is 1/x, with x representing the
number of time actB was taken. Transitions are determinis-
tic. We also create a learner SimpleAg, which chooses action
uniformly at random and does not process the received re-
ward. In other words, the agent is not actually learning.

Figure 4 presents the algorithm for creating the SimpleAg

learner. We omit imports and unused abstract methods to
enhance presentation. As seen, once created, the learner
proceeds with the default Learner initialisation (line 3). For
the ease of exposition, only the act_last and feedback_last

are implemented. The act_last procedure simply checks
the available actions (line 6), then chooses one uniformly at
random (line 7) and, finally, returns the chosen action to-
gether with its current state (line 8). The feedback_last

method, on the other hand, simply prints (line 11) the re-
ward received for taking the action previously chosen. Ob-
serve that the learner is not actually learning, given the
received reward is not being used to improve its knowledge.

The algorithm of the SimpleEnv environment is presented
in Figure 5. Again, we omit imports and unused abstract
methods to enhance presentation. Initially, the environment
performs the default Environment initialisation (line 3) and
creates an representation of the actions (line 4). Recall that
actB’s reward is a function of the number of times it was
taken. Thus, the counter on line 5 keeps track of this num-
ber. At each step, the environment gets the only learner
from its internal list of learners (line 15). The environment
then gets and prints the agent’s action (lines 16 and 17),
computes the corresponding reward (lines 18–21), and pro-
vides it to the learner (line 22).

After the SimpleEnv and SimpleAg classes are defined, it
remains to define the experiment and run the simulation.
This is the simplest part, and is performed as in Figure 6.

6. CONCLUDING REMARKS
Validating multiagent reinforcement learning (MARL) ap-

proaches in real world problems is a challenging task. We
presented PyRL – a Python Reinforcement Learning Li-
brary, which facilitates the development and validation of
(MA)RL techniques. PyRL comprises different RL algo-
rithms and validation scenarios (environments), and enables

1 class SimpleAg(Learner):
2 def __init__(self, name, env):
3 super(SimpleAg,self).__init__(name,env,self)
4

5 def act_last(self):
6 actions = self._env.get_state_actions()
7 rand = np.random.randint(len(actions))
8 return state, actions[rand]
9

10 def feedback_last(self, reward, new_state):
11 print 'Received reward of %f' % reward

Figure 4: Example of a simple Learner that chooses
its actions randomly.

1 class SimpleEnv(Environment):
2 def __init__(self):
3 super(SimpleEnv, self).__init__()
4 self.actions = ['actA', 'actB']
5 self.calls_actB = 0
6

7 def get_state_actions(self, state=None):
8 return self.actions
9

10 def run_episode(self):
11 while True:
12 self.run_step()
13

14 def run_step(self):
15 learner = self._learners.values()[0]
16 s, a = learner.act_last()
17 print 'Agent chosen %s' % a
18 r = 1.0
19 if a == 'actB':
20 self.calls_actB += 1
21 r = 1.0 / self.calls_actB
22 learner.feedback_last(r, s)

Figure 5: Example of a simple stateless Environment

with two actions actA and actB.

1 # creates the environment
2 env = SimpleEnv()
3

4 # creates the learner
5 learner = SimpleAg('A1', env)
6

7 # runs a single episode
8 env.run_episode()

Figure 6: Example of an experiment employing a
SimpleEnv environment and a SimpleAg learner.

the setup of experiments with little effort. The main ad-
vantage of PyRL as compared to other libraries refers to
its link with the SUMO traffic simulator, thus delivering
traffic-specific environments. We presented PyRL’s archi-
tecture and discussed examples on how to use and extend
it. Based on the examples, we demonstrated that setting up
a complex traffic experiment in PyRL is as simple as setting
up a classical cliff walking one.

PyRL is still under development. As such, our next step
concerns extending PyRL with new modules. In the con-
text of environments, we shall include a SUMO environ-
ment for managing traffic lights. As for the learners, we
consider including other relevant RL algorithms/techniques,



such as GIGA-WoLF [5], AWESOME [7], regret-minimising
Q-learning [14], learning automata [10, 15], potential-based
reward shaping [11], and difference rewards [2]. Addition-
ally, we aim at integrating PyRL with R (for data analysis)
and Matplotlib (for plotting results). Last but not least, we
look forward to receiving feedback and to improving PyRL
towards the needs of the MARL community.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments and suggestions. This research was partially sup-
ported by CNPq, CAPES, and FAPERGS grants.

REFERENCES
[1] S. Abdallah and V. Lesser. Learning the task

allocation game. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS06), pages 850–857,
Hakodate, Japan, 2006. New York: ACM Press.

[2] A. K. Agogino and K. Tumer. Unifying temporal and
structural credit assignment problems. In Proceedings
of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’04, pages 980–987, New York, July 2004.
IEEE Computer Society.

[3] A. L. C. Bazzan. Opportunities for multiagent systems
and multiagent reinforcement learning in traffic
control. Autonomous Agents and Multiagent Systems,
18(3):342–375, June 2009.

[4] A. L. C. Bazzan and F. Klügl. Introduction to
Intelligent Systems in Traffic and Transportation,
volume 7 of Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan and
Claypool, 2013.

[5] M. Bowling. Convergence and no-regret in multiagent
learning. In L. K. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing
Systems 17: Proceedings of the 2004 Conference, pages
209–216. MIT Press, 2005.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. OpenAI
Gym, 2016. arXiv preprint arXiv:1606.01540.

[7] V. Conitzer and T. Sandholm. AWESOME: A general
multiagent learning algorithm that converges in
self-play and learns a best response against stationary
opponents. Machine Learning, 67(1-2):23–43, sep 2006.

[8] L. P. Kaelbling, M. Littman, and A. Moore.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[9] K. Leyton-Brown and Y. Shoham. Essentials of Game
Theory: A Concise Multidisciplinary Introduction,
volume 2 of Synthesis Lectures on Artificial

Intelligence and Machine Learning. Morgan and
Claypool Publishers, San Rafael, USA, 1 edition, June
2008.

[10] K. S. Narendra and M. A. L. Thathachar. Learning
Automata: An Introduction. Prentice-Hall, Upper
Saddle River, NJ, USA, 1989.

[11] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application
to reward shaping. In In Proceedings of the Sixteenth
International Conference on Machine Learning, pages
278–287. Morgan Kaufmann, 1999.

[12] D. de Oliveira and A. L. C. Bazzan. Multiagent
learning on traffic lights control: effects of using shared
information. In A. L. C. Bazzan and F. Klügl, editors,
Multi-Agent Systems for Traffic and Transportation,
pages 307–321. IGI Global, Hershey, PA, 2009.

[13] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art. Autonomous Agents
and Multi-Agent Systems, 11(3):387–434, 2005.

[14] G. de O. Ramos, B. C. da Silva, and A. L. C. Bazzan.
Learning to minimise regret in route choice. In S. Das,
E. Durfee, K. Larson, and M. Winikoff, editors,
Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS
2017), São Paulo, May 2017. IFAAMAS.

[15] G. de O. Ramos and R. Grunitzki. An improved
learning automata approach for the route choice
problem. In Koch, Meneguzzi, and Lakkaraju, editors,
Agent Technology for Intelligent Mobile Services and
Smart Societies, volume 498 of Communications in
Computer and Information Science, pages 56–67.
Springer Berlin Heidelberg, 2015.

[16] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder,
F. Sehnke, T. Rückstieß, and J. Schmidhuber.
PyBrain. Journal of Machine Learning Research,
11:743–746, feb 2010.

[17] J. G. Schneider, W.-K. Wong, A. W. Moore, and
M. A. Riedmiller. Distributed value functions. In
I. Bratko and S. Dzeroski, editors, Proceedings of the
Sixteenth International Conference on Machine
Learning, ICML ’99, pages 371–378, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[18] R. Sutton. Reinforcement-Learning-Toolkit 1.0, 2011.
Available at:
https://pypi.python.org/pypi/Reinforcement-
Learning-Toolkit/1.0.

[19] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[20] K. Tuyls and G. Weiss. Multiagent learning: Basics,
challenges, and prospects. AI Magazine, 33(3):41–52,
2012.

[21] C. J. C. H. Watkins and P. Dayan. Q-learning.
Machine Learning, 8(3):279–292, 1992.


