Speeding up Tabular Reinforcement Learning Using
State-Action Similarities

Ariel Rosenfeld
Bar-llan University

arielros1@gmail.com

ABSTRACT

This paper proposes a novel method to speed up temporal
difference learning by using state-action similarities. These
hand-coded similarities are tested in three well-studied do-
mains, demonstrating our approach’s benefits. Additionally,
a human subjects study with 16 programmers shows that
the proposed approach can reduce the engineering effort of
human designers. These results combine to show that our
novel method is not only effective, but can be efficiently used
by non-expert designers.

CCS Concepts

eComputing methodologies — Artificial intelligence;

Keywords

Reinforcement Learning, Human Study

1. INTRODUCTION

Reinforcement Learning (RL) [29] has had many successes,
solving complex, real-world problems. When tackling such
problems, the designer must face the question about how
much human knowledge to inject to the system. From the
AT or research perspective, the more that can be learned au-
tonomously, the more interesting and beneficial the agent.
From the engineering or more practical perspective, more
human knowledge is desirable as it can help improve learn-
ing, but only if it is practical to gather or leverage, and
only as long as it does not cause the agent to be limited to
sub-optimal solutions after training.

Many successful RL applications have traditionally used
highly engineered state features (e.g., ‘the distance between
the simulated robot soccer player with the ball to its clos-
est opponent’ and ‘the minimal angle with the vertex at
the simulated robot soccer player with the ball between the
closest teammate and any of the opponents’ [26]). With
the recent successes of DeepRL [18|, convolutional neural
networks were shown to successfully learn features directly
from pixel-level representations. However, such features are
not necessarily optimal, significant amounts of human time
is necessary to define the deep neural network’s architec-
ture, and significant amounts of data is required to learn
the features. This paper proposes a different, and poten-
tially complimentary, approach, in a ‘shallow RL’ setting.

In order to minimize confounding factors, this paper con-
siders the simplest representation for temporal difference
RL algorithms, a tabular representation of an action-value

Matthew E. Taylor
Washington State University
matthew.e.taylor@wsu.edu

Sarit Kraus
Bar-llan University

sarit@cs.biu.ac.il

function, with variants of the well-studied @-learning al-
gorithm [34]. Our novel approach, which we name SASS,
standing for State Action Similarity Solutions, allows the
generalization of knowledge across state-action values in the
action-value function table by leveraging hand-coded heuris-
tics. While there are many ways of leveraging human knowl-
edge in an RL learner by leveraging demonstrations or direct
human knowledge (e.g., inverse reinforcement learning [21]
27), learning from demonstration [2, 33|, learning from ad-
vice [15], etc.), SASS focuses on allowing users to specify
state-action similarities in a given domain. In addition to
showing that such similarities effectively improve learning,
we also provide results from a human subject study, show-
ing that such similarities can be provided by non-expert,
RL-knowledgeable participants in practice.
Our approach and its integration with the @Q-learning frame-

work provide several desired properties that compare favor-
ably with existing RL methods:

1. SASS is able to significantly speed up the agents’ learn-
ing process in terms of sample efficiency.

2. Unlike various other generalization techniques, SASS
retains the convergence and near-optimal guarantees
of the original -learning algorithm.

3. SASS is based on an arbitrary designer-defined simi-
larity function that does not assume any specific func-
tional form, as other generalization techniques often
do. Empirical evaluation with 16 participants showed
that our approach improved learning in practice and
did not require specific knowledge by the algorithm
designers (the authors).

This paper focuses on showing how state-action similari-
ties can be leveraged by very simple algorithms, allowing us
to demonstrate the success of our ideas without confounding
factors. We also believe these successes will extend to other,
more complex, RL algorithms and that these similarities can
be integrated with traditional function approximation tech-
niques like neural networks, but these two extensions will be
left to future work.

We evaluate our methodology in three RL tasks of varying
complexity:

1. The “toy” task of simple robotic soccer, providing a ba-

sic setting for the evaluation of the proposed approach.

2. A large grid-world task named Pursuit, showing the
scale-up of our approach.

3. The popular game of Mario, exemplifying our approach’s
benefits in a task with billions of states.



2. PRELIMINARIES AND BACKGROUND

An RL agent generally learns how to interact with an
unfamiliar environment [29]. We define the RL task using
the standard notation of a Markov Decision Process (MDP)
[35]. An MDP is defined as (S, A4, 7T,R,~) where

e S is the state-space;
e A is the action-space;

e T:8xAxS —[0,1] is a transition function where
T (s,a,s’) is the probability of making a transition
from state s to state s’ using action a;

e R:S8 x A— R is the reward function;

e v € [0,1] is the discount factor, which represents the
significance of future rewards compared to present re-
wards.

In an RL task, 7 and R are initially unknown to the
agent. In discrete time tasks, the agent interacts in a se-
quence of time steps. On each time step, the agent observes
its state s € S and is required to select an action a € A.
The agent then receives a reward r according to the un-
known R function and arrives at a new state s’ according to
the unknown 7 function. We define an agent’s experience
as a tuple (s,a,r,s’) where action a is taken in state s, re-
sulting in reward r and a transition to next state s’. The
agent’s objective is to maximize the accumulated discounted
rewards throughout its lifetime. Namely, the agent seeks to
find a policy 7 : S — A that maximizes the expected total
discounted reward (i.e., expected return) from following it.

Temporal difference RL algorithms such as Q-learning [34]
approximate an action-value function Q : S x A — R,
which maps state-action pairs to the expected real-valued
discounted return. Using an estimated @ function, which
continues updating as long as the agent is operating in the

environment, such RL algorithms specify how the agent should

select which action to perform, i.e., which policy 7 the agent
should follow, and how should the agent change its knowl-

edge as a result of its experience. For each experience (s, a,r,s’),

Q-learning updates the @-value estimation according to the
temporal difference update rule

Q(s,a) = Q(s,a) + ae (1)

where « is the learning rate and e is the temporal difference
error term defined as

e+ r+ymazryQ(s’,a") — Q(s, a) (2)

If both S and A are finite sets, the @) function can be easily
represented in a table, namely in an |S| X |.A| matrix, where
each state-action pair is saved along with its discounted re-
turn estimation. In this case, the convergence of @)-learning
has been proven in the past (under standard assumptions).
See Sutton and Barto [29] for more details.

In this work we focus on the @-learning algorithm with
a tabular representation of the @} function. This scheme
is, perhaps, the most commonly applied in RL tasks. As
mentioned before, tabular representation suffers from low
convergence rates. To address this problem, designers in-
fuse domain knowledge into the agent’s learning process in
different ways. A few recent examples include the incorpo-
ration of human provided feedback [22] or demonstrations
[5] from which the agent can deduce knowledge, transferred

policies from similar domains |4], or by using potential base
reward shaping (PBRS) to bias the agent’s actions [9).

In this paper we present a new approach to infuse prior
knowledge using similarity. The notion of similarity allows
the human designer to bias the generalization of the learning
agent’s experience across the state-action space according to
the designer’s prior knowledge and beliefs using a theoreti-
cally grounded technique. The generalization of knowledge
over the state-action space is also possible using existing
methods, such as Function Approximation (FA) [7] or neu-
ral networks (including those used in Deep Reinforcement
Learning (DeepRL) [17]). These two approaches require sig-
nificant effort on the part of the human designer. When us-
ing FA, the designer needs to abstract the state-action space
in a sophisticated manner such that the assumed similarities
will be modeled while avoiding unwanted coarse similarities.
On the other hand, when using neural networks or DeepRL,
the designer can avoid such feature extraction of the prob-
lem yet she must engineer an appropriate neural network ar-
chitecture that will leverage state-action similarities in the
problem (or her implicit prior knowledge). The success of
the learning agent in such cases critically depends on the
designer’s effort.

The notion of similarity is also common in other tech-
niques that allow the learning agent to provide predictions
for unseen or infrequently visited states based on their sim-
ilarity to other states. For example, the Texplore algorithm
|10] uses supervised learning techniques (i.e., decision trees)
to generalize the effects of actions across different states.
The assumption is that actions are likely to have similar ef-
fects across states. Tamassia et al. [31] suggest a different
approach by dynamically selecting state-space abstraction
by which different states that share the same abstraction
features are consider similar.

Brys et al. |5] hand code a distance metric over the state-
space prior to the agent’s learning and Taylor et al. [32]
learn a distance metric on-line, based on gathered transi-
tion data. In both cases, the authors use the metrics to bias
learning to improve learning by biasing the policy towards
actions that have been demonstrated by people in similar
states and by generalizing across state features based on the
metric, respectively. Sequeira et al. [25] and Girgin et al. [§]
have presented variations of this notion by online identify-
ing associations between different states in order to define a
state-space metric or equivalence relation.

Prior knowledge can also be exploited by various FA meth-
ods. For example, a designer can abstract the state-space
such that similar states would be represented using the same
meta-state. The trade-off is clear: if states are represented
in a rich format (i.e., using a very detailed description), it
will take the agent considerable time to learn the expected
return associated with the many state-action pairs, espe-
cially if outcomes are stochastic [1]. This phenomenon is at
its worse if the agent considers every feature making up the
state-space. Unfortunately, the success of FA and DeepRL
in practice heavily depends on parameter choices. Moreover,
desired properties such as convergence and near-optimality
are often lost in the process.

Updating more than a single table entry per experience
has been also proposed in Dyna [28], an RL algorithm that
learns both from direct environmental interaction and by
planning over an approximate model learned from experi-
ence. Dyna attempts to learn more quickly, reducing envi-



ronment interactions (data complexity) by trading off time
(computational complexity). This approach is most effective
when the environment can be quickly modeled.

QS-learning

In order to integrate our approach within the @-learning
framework we adopt a previously introduced technique [24],
where @Q-learning is combined with a spreading function
that “spreads” the estimates of the Q-function in a given
state to neighboring states, exploiting an assumed spatial
smoothness of the state-space. Formally, given an experi-
ence (s,a,r,s’) and a spreading function o : S x S — [0, 1]
that captures how “close”states s and s’ are in the environ-
ment, a new update rule is used:

Q(3,a) = Q(38,a) + ao(s, S)e 3)

where e is the temporal difference error term (Eq. . The
update rule in Eq. [3| is applied to all states in the envi-
ronment after each experience. The resulting variation is
denoted as @S-learning (where S stands for spreading).

Algorithm 1 )S-learning Algorithm
Require: State-space S, Action-space A, discount factor ,
learning rate «, similarity function o(s,a,s’,a’)
initialize @ arbitrarily (e.g. Q(s,a) =0)
for t=1,2,... do
s is initialized as the starting state
repeat
choose an action a € A(s) based on an exploration
strategy
perform action a
observe the new state s’ and receive reward r
e+ r+vy-maxgca Qs a") — Q(s,a)
for each 5§ € S do
Q(5,a) < Q(3,a) + ao(s, §)e
end for
s« s
until s’ is a terminal state
end for

To the best of our knowledge, this method was not ex-
tended or evaluated using state-action similarities nor was
it tested in domains of larger complexity than simple grid
worlds.

We now turn to discuss a few theoretical properties of the
Q) S-learning algorithm which we will use later, in Section
in instantiating our approach to the Q-learning framework.

PROPOSITION 1. Standard Q-learning is a special case of
QS-learning.

PRrROOF. By setting the function o to the Kronecker delta
(6(a,8) = 1 if a = B, otherwise d(c,3) = 0), Eq. |3 is
equivalent to Eq. 1. [

PROPOSITION 2. QS-learning converges to the optimal pol-
icy given the standard condition for convergence of Q-learning
and a similarity function o that converges to the Kronecker
delta over the state-action space at least as quickly as the
learning rate o converges to zero.

PROPOSITION 3. QS-learning converges to a near-optimal
policy given the standard condition for convergence of Q-
learning with a o which is fixed in time. The accuracy of the
QS-learning depends on the accuracy of o in hindsight.

PROOF. Proposition 2 was proven in 23] and Proposition
3 was proven in [30]. Both propositions were proven for the
update rule of Eq. [3|without loss of generality, and therefore
the provided proofs apply to the Q.S-learning update rule of
Eq.[flas well. O

3. THE SASS APPROACH

We first formally define the similarity function:

DEFINITION 1. Let S, A be a state-space and an action-
space, respectively. A similarity function o : § X A X S X
A — [0,1] maps every two state-action pairs in S X A to the
degree to which we expect the two state-action pairs to have
a similar expected return.

o is considered valid if for all state-action pairs s, a it satisfies
o(s,a,s,a) >0 (4)

In this study we assume that the similarity function is
defined by the designer. Automatic identification of similar-
ities will be explored in future work.

Similarity functions can be defined in multiple ways to
capture various assumptions about the state-action space.
In this section we define, discuss and exemplify three sim-
ilarity notions that can be easily instantiated to different
domains. In Section @, we provide a detailed instantiation
of the proposed similarity notions to three RL tasks and in
Section m we discuss a human subjects study showing our
approach’s practicality and advantage with human design-
ers.

1: Representational similarity.

Representational similarity arises from the representation
of the tasks’ state-action space. FA is perhaps the most
prominent example of the use of this technique. The func-
tion approximator (e.g., tile coding, neural networks, ab-
straction, etc. [29]) approximates the Q-value instead of us-
ing a tabular representation and therefore implicitly force a
generalization over the feature space used by the approxi-
mator. A common method in this realm is using a factored
state-space representation, where each state is represented
by a vector of features which capture different character-
istics of the state-space. Using such abstraction, one can
easily define similarities using a metric over the factored
state-action (e.g., |25} [5]). Defining representational simi-
larities introduces a major engineering concern of choosing
the right abstraction method or function approximator that
would work well across the entire state-action space. That
is, we wish to avoid (or at least minimize) the generalization
of experiences in the state-action space where we believe
such a generalization is incorrect, yet allow such a general-
ization in other regions. Representational similarity is the
most basic form of similarity and it has repeatedly shown its
benefit in real world applications. However, no one-size-fits-
all method exists for efficiently representing the state-action
space. See Figure[l| (a) for an illustration.

2: Symmetry similarity.

RL agents learn faster in smaller environments. There-
fore, whenever possible, a designer seeks to consolidate state-
action pairs that are identical or completely symmetrical in
order to avoid redundancies. Zinkevich and Balch [36] for-
malized the concept of symmetry in MDPs and proved that if



such consolidation of symmetrical state-action is performed
accurately the optimal @ function and the optimal policy are
not altered. However, automatically identifying symmetries
is computationally complex [19|, especially when the sym-
metry is only assumed. For example, in the Pursuit domain
one may consider the 90°, 180° and 270° transpositions of
the state around its center (along with the direction of the
action) as being similar (see Figure [1| (b)). However, as the
predators do not know the prey’s policy, which may be bi-
ased towards some absolute direction, they can only assume
such symmetry exists.

3: Transition similarity.

As previously discussed, defining a metric over the state-
space is a common practice in RL tasks. In deterministic
environments, where the transition function does not impose
any uncertainty, one can define state-action similarities by a
reduction to the goal states’ similarity. For example, given
that states s and § are similar according to some state-space
similarity, then all state-action pairs that result in either s
or § should be considered similar to some extent. Another
interpretation of the notion is to consider the relative effects
of actions in different states. A relative effect is the change
in the state’s features caused by the execution of an action.
Exploiting relative effects to speed up learning was proposed
in |11} [13] in the context of model learning. For example,
in the Mario domain, if Mario walks right or runs right,
outcomes are assumed to be similar as both actions induce
similar relative changes to the state (see Figure [1] (¢)). In
environments where the transition model cannot be a priori
assumed, the above notions are not easy to instantiate.

I8 ud

(a) (b)

Figure 1: (a) Initial positioning of virtual players (A
and B) in a simple robotic soccer task. The state in
which both players are artificially placed one grid-
cell down from their original position (marked as A*
and B*) should be considered similar to the origi-
nal one. (b) Two possible state-action pairs in the
4 X 4 Pursuit domain. Both state-action pairs are
assumed to be similar. (c) A state in the Mario AI
task. If Mario decides to walk right or run right,
outcomes are assumed to be similar (falling into the

gap).

SASS in the @-learning Framework

For the purpose of incorporating similarities within @-learning

with tabular representation, we assume a similarity function
o(s,a,s’,a’) is given by the designer. We then use this simi-
larity function o instead of the spreading function needed by
the @S-learning in Algorithm [1} In words, for each experi-
ence (s, a,r,s’) that the agent encounters, depending on the
similarity function o, we seek to update more than a single
(s,a) entry in the @ table. Therefore, we perform multiple
updates, one for each entry (8, a) for which o(s,a, §,a) > 0.

We use the following update rule:

Q(5,a) = Q(8,a)+ao(s,a, 8, a) (rJr'yAZrllgﬁ Q(s',a ) —Q(s, a))
(5)

which, as discussed in Section [2| does not compromise the
theoretical guarantees of the unadorned @Q-learning algo-
rithm.

The update rule states that as a consequence of experi-
encing (s, a,r,s’), an update is made to other pairs (3, a) as
if the real experience actually was (3, a,r,s’) (discounted by
the similarity function).

In order to avoid a time complexity of O(|S||A|) per step,
Q) S-learning should be restricted to update state-action pairs
for which the similarity is larger than € > 0, where € is a
user chosen threshold. In our experiments (see Section ,
we found that only a minor increase in time-complexity was
experienced in practice.

For the interest of clarity, from this point forward, we will
use the term )S-learning using the above @Q-learning-with-
SASS interpretation. Namely, using a designer-defined sim-
ilarity function o and the update rule of Eq. 5] we will mod-
ify the classic QS-learning algorithm yet keep its original
name due to their inherent resemblance.

4. EVALUATION

We evaluate our approach in two experiments. First,
we evaluate our approach against regular @-learning, Q-
learning combined with state-space abstraction and the Dyna
algorithm. Second, we evaluate our approach in a human
study in which we examine the human designers’ engineer-
ing effort in instantiating our method to a simple grid-world
task.

4.1 Speeding-up RL

We examine the proposed state-action similarities (Sec-
tion [3) along with the QS-algorithm (Section in three
RL tasks of varying complexity: A “toy” task named Sim-
ple Robotic Soccer, a discrete grid-world task named Pursuit
and the popular Mario Al game. Each task is first described
and discussed. Then, the task is evaluated in the following
manner: First, we instantiate the state-action similarities to
the specific domain and examine the agent’s learning per-
formance over time (denoted @S). Then, we compare the
learning performance to that of a Q-learning agent that uses
state-space abstraction (denoted QA), a basic Q-learning
agent (denoted @) and a Dyna agent (denoted Dyna). Each
task provides us with a unique opportunity to examine dif-
ferent similarity notions and combine our approach with ex-
isting ones: In the Simple Robotic Soccer task, presented
in Section we evaluate our approach’s benefits in a
basic settings which allows us to isolate the effect of our ap-
proach on the agent’s learning performance and the human
designer’s effort. In the Pursuit task, presented in Section
[£T2] we evaluate a more realistic task where symmetries
can play a crucial role in alleviating the agent’s learning ef-
fort. Last, we evaluate our approach in the Mario Al task,
presented in Section [4.1.3] which emphasize the importance
of transition similarities which were not effectively used in
the first two tasks. All technical parameters used in this
study (learning rates, exploration type, eligibility trace pa-
rameter, etc.) in the three tasks are fully specified in the
code and are available in http://www.biu-ai.com/RL.


http://www.biu-ai.com/RL

In all tasks we used basic PBRS [20] to avoid long learning
periods under all conditionsﬂ Note that PBRS allows one to
modify the reward function of an MDP without altering the
desired theoretical properties of @-learning and @) S-learning
algorithms.

In the Pursuit and Mario Al tasks, we use Q(\)-learning
and @QS(X\)-learning, which are slight variations of the Q-

learning and @QS-learning algorithms that use eligibility traces.

The addition of eligibility traces to the evaluation was car-
ried out as done by the authors of the recent papers from
which the implementations have been taken. This provides
us with an opportunity to compare SASS with recently pro-
vided solutions without altering their implementation. The
interested reader can find the formal definition and discus-
sion on eligibility traces elsewhere [29].

The evaluation of actual running times was done on a
personal computer with 16 GB RAM and a CPU with 4
cores, each operating at 4 GHz.

4.1.1 Simple Robotic Soccer.

Task Description: Proposed in [14], the task is per-
formed on an 8 x 8 grid world, defining the state-space S.
Two simulated robotic players occupy distinct cells on the
grid and can take one of 5 possible actions: North (N),
South (S), East (E), West (W) or Idle (I). The simulated
robots are designed to play a simplified version of soccer:
At the beginning of each game players are positioned ac-
cording to Figure [1| and possession of the ball is assigned
to one of the players (either the learning agent or the fixed,
handcoded-policy opponentf”). During each turn, both play-
ers select their actions at the same time and the actions are
executed in random order. When the attacking player (the
player with the ball) executes an action that would take it
to a square occupied by the other player, possession of the
ball goes to the defender player (the player without the ball)
and the move does not take place. A goal is scored when
the player with the ball enters the goal region of the other
player. Once a goal is scored the game is won; the agent
who scored receives 1 point and the other agent receives -
1 point, and the game is reset. The discount factor was
set to 0.9 as done in the original paper. Our Python code
(along with other codes used in this study) is available at
http://www.biu-ai.com/RL for future research. The same
code is also used in the human experiment specified in Sec-
tion

We used a basic state-space representation as done in [16],
which is, to the best of our knowledge, the most recent in-
vestigation of the game. A state s is represented as a 5-tuple
(za, ya, xB, yB, b) where x; and y; indicate player i’s posi-
tion on the grid and b € {A, B} indicates which player has
the ball. The action-space is defined as a set of 5 actions as
specified above. Overall, the state-action space consists of
approximately 41,000 state-action pairs.

Abstraction: We define the state-space abstraction, used

by Q A-learning using a simple distance-based approach, which

represented each state according to the learning agent’s dis-

The PBRS were defined as presented in the original papers
from which each task was taken.

2The opponent was given a handcoded policy, similar to
that used in the original paper, which instructs it to avoid
colliding with the other player while it has the ball and to
attempt to score a goal. While defending, the agent merely
chases its opponent and tries to steal the ball.

tance to its opponent and goal.

Similarities: We define the state-action similarities, used
by @S-learning, with respect to the similarity notions pre-
sented in Section [B} As representational similarities, the
agent artificially moves both players together across the grid,
keeping their original relative distance (see Figure. As the
players are moved further and further away from their orig-
inal positions, the similarity estimation gets exponentially
lower. Symmetry similarities were identified using an imag-
inary horizontal line dividing the grid in half. Experiences
in the upper half of the field are mirrored in the bottom part
by mirroring states and actions with respect to the Y-axis
and vice-versa. Transition similarities were not defined for
this task.

Results: Four learning agents (QS-learning, Q A-learning,
Q-learning and Dyna) were trained for 1000 games. After
each batch of 50 games, the learning was halted and 10,000
test games were played during which no learning occurred.
The process was repeated 10,000 times. The results show
that under the )S-learning condition, our agent learns sig-
nificantly faster and outperforms both the QA-learning, Q-
learning and Dyna conditions from the first batch onwards.
See Figure [2] for a graphical representation of the learning
process.

1
0.8 -
0.6
—a=QS
f Q
0.2 —Dyna
0 x50

02 46 8101214161820

Figure 2: The ()S-learning agent outperforms both
the QA-learning, Q-learning and Dyna agents in Sim-
ple Robotic Soccer. The X-axis is the learning du-
ration (in games) and Y-axis is the winning rate of
the agent.

On average, the Q.S-learning agent updated 66 entries per
iteration. However, the run-time for () S-learning agent was
only slightly elevated compared to the Q-learning and Q A-
learning conditions. While the @Q-learning and QA-learning
complete their training (1,000 games each) in 0.03-0.04 of
a second on average (with no significant difference between
them), the @S-learning and Dyna agents complete the same
training in 0.06 and 0.08 of a second, respectively.

4.1.2 Pursuit.

Task Description: The Pursuit task, which is also known
as the Chase task or the Predator/Prey task, was proposed
by Benda et al. |3]. For our evaluation we use the recently
evaluated instantiation of Pursuit implemented in [6]. Ac-
cording to the authors’ implementation, there are two preda-
tors and one prey, each of which can move in the four car-
dinal directions as well as choose to stay in place (5 actions
each) on a 20 x 20 grid world. The prey is caught when a
predator moves onto the same grid cell as the prey. In that
case, a reward of 1 is given to the predators, 0 otherwise.


http://www.biu-ai.com/RL

We refer the reader to the original paper for the complete
description of the underlining MDP and parameters. The
authors use Q(\)-learning, a slight variation of Q-learning,
and therefore, so do we.

Abstraction: We use Brys et al. @’s implemented tile-
code approximation for the @ A-learning agent deployment.

Similarities: In our implementation, each state is rep-
resented as (Az, Ay, Ay, Ay,) where Ay, (Ay,) is the
difference between predator i’s x-index (y-index) and the
prey’s x-index (y-index), thereby we set a similarity of 1 for
all states in which the relative positioning of the prey and
predators is the same. Symmetry similarities were defined
using 90°, 180° and 270° transpositions of the state around
its center (along with the direction of the action). Symmetry
similarities were also identified using imaginary horizontal
and vertical lines dividing the grid in half. Experiences in
the upper (left) half of the field are mirrored in the bottom
(right) part by mirroring states and actions with respect to
the Y-axis (X-axis) and vice-versa. Transition similarities
were defined for all state-action pairs that are expected to
result in the same state.

Results: Four learning agents (QS, QA, @ and Dyna)
were trained for 10,000 games. After each batch of 500
games, the learning was halted and 10,000 test games were
played during which no learning occurred. The process was
repeated 10,000 times. The results show that in the @S-
learning condition, our agent learns significantly faster and
outperforms the @-learning condition from the first batch
onwards and the @QA-learning and Dyna conditions from
the third batch onwards. See Figure [3| for a graphical rep-
resentation of the learning process.

—a-QS
3000 - A
Q
2000 - Dyna
1000 -
0 rrrrrrrrr o X100

0 15 30 45 60 75 90

Figure 3: The @QS-learning agent outperforms both
the QA-learning and (-learning agents in Pursuit.

On average, the QS-learning agent updated 12 entries per
iteration. However, while the @Q-learning and @ A-learning
agents complete their training (10,000 games each) in 8.5
seconds on average (with no significant difference between
the two), the QS-learning agent completes the same training
in 17.5 seconds on average. Dyna performed significantly
worse, averaging 87 seconds for its training. Unlike other
conditions, Dyna also introduced extreme memory require-
ments due to its model-based approach.

4.1.3 Mario Al

Task Description: Super Mario Bros is a popular 2-D
side-scrolling video game developed by the Nintendo Corpo-
ration. In this work we use the popular Mario Al version
of the game, often used for the evaluation of RL techniques
. We use the recently evaluated formulation of the Mario

AT task proposed by Suay et al. [27]. The authors use a
27-dimensional discrete state-variables representation of the
state-space and model 12 actions that Mario can take. We
refer the reader to the original paper for the complete de-
scription of the underlining MDP and parameters. Given
the authors’ abstraction of the state-space, the size of the
state-action space is over 100 billionﬂ Due to the huge state-
action space, @-learning without the authors’ abstraction
will not be evaluated. Due to extreme memory requirements
in run-time, the authors were unable to evaluate the Dyna
condition properly. Note that the authors use Q(\)-learning
and, therefore, so do we.

Similarities: As the original authors have already ab-
stracted the state-space, we consider their provided agent
to be a QA-learning agent.

Building upon the authors’ abstraction, we define our sim-
ilarities. We noticed that each state representation indicates
whether Mario can jump or shoot using 2 Boolean variables.
Given a state-action pair in which Mario does not jump or
shoot, we define all respective states with the four variations
of these two Boolean variables as similar to the original pair.
Namely, if Mario walks right, then regardless of Mario’s abil-
ity to shoot or jump, the state-action pair is considered sim-
ilar to the original one. Symmetry similarities are defined
using the mirroring of the state-actions across an imaginary
horizontal line that divides the environment in half, with
Mario in the middle. As illustrated in Figure [1] regardless
of specific state, performing action a (e.g., move right) is
similar to using action a+“run” (e.g., run right). That is,
we assume each action introduces a similar relative change
to a state whether it is executed with or without the running
option.

Results: Two learning agents (Q.S-learning and Q A-learning)

were trained for 20,000 games. After each batch of 1000
games, the learning was halted and 1000 test games were
played during which no learning occurred. The process was
repeated 100 times. The two agents are compared against
human performance level as evaluated in [27]. The results
show that the @S-learning agent surpasses human perfor-
mance level significantly faster than the Q A-learning agent.
See Figure [ for a graphical representation of the learning
process.

1500
P S =
1000 /=
—a-QS
500
Human
0 I\\\\\\\\\\\\\\\\IIIX104
jZ 4 6 8 101214161820

-500

Figure 4: The QS-learning agent surpasses human
performance level significantly faster than the QA-
learning agent in Mario.

On average, the QS-learning agent updated 33 entries per

3Some of the states are never encountered in reality. For
example, it is impossible to have Mario trapped by enemies
from all directions at the same time.



iteration. However, the QA-learning agent requires 63.4%
of the time as @)S-learning agents to complete it’s training
(20,000 games each, 33 vs. 55 seconds) on average.

4.2 Human Study

A popular competing approach to the one proposed in
this paper is using state-space abstraction. By using ab-
straction, a designer changes the state-space representation
(usually reduces its size) and thereby speeds up @Q-learning.
We speculate that in most domains, with thoughtful and
trial-and-error, a designer may find both good state-space
abstractions and state-action similarities that will speed up
the RL processes. However, in the following experiment
we will show that given a limited amount of time, an RL-
knowledgeable designer could benefit more from using the
similarity approach which is presented in this study.

In the following we describe a first of its kind human study
aimed at estimating the engineering effort needed by design-
ers to speed up RL using the above two approaches in the
Simple Robotic Soccer task (see Section. We will first
describe our experimental setup and then discuss the results.

4.2.1 Experimental Design

We recruited 16 Computer Science grad-students (4 PhD
students and 12 Master students, ranging in age from 23
to 43, 10 male and 6 female) who are majoring in Al to
participate in the experiment and act as engineers of our
RL agents. All students have prior knowledge of RL from
advanced Al courses. The students are majoring in Machine
Learning (7), Robotics (4) and other computational AI sub-
fields (5).

Prior to the experiment, all of the participants partici-
pated in an hour-long tutorial reminding them of the ba-
sics of @Q-learning and explaining the Simple Robotic Soc-
cer task’s specification. Participants were given two python
codes: First, an implemented Q) A-learning algorithm in which
participants had to design and implement a state-space ab-
straction. Specifically, the participants were requested to
implement a single function that translates the naive rep-
resentation to their own state-space representation. Sec-
ond, participants were given a ()S-learning algorithm in
which they had to implement a similarity function. Both
codes already implemented all the needed mechanisms of
the game and the learning agents and are available in http:
//www.biu-ai.com/RL.

We used a within-subjects experimental design where each
participant was asked to participate in the task twice, a
week apart. In both sessions, the participants’ task was
to design a learning agent that will outperform a basic Q-
learning agent in terms of asymptotic performance and/or
average performance (one would suffice to consider the task
successful) by using either abstraction or similarities, in no
more than 45 minutes of WOI‘kH That is, participants were
asked to implement both the abstraction and the similar-
ity function (only one in each session) that will allow the
agent learn a good policy as quickly as possible. Partici-
pants were counter-balanced as to which function they had
to implement first. We then tested the participant’s submit-

“Ideally, we want participants to take as much time as they
need. However, given that each participant had to dedicate
about 3 hours for the whole process (1 hour tutorial + 1.5
hours of programming and half an hour of logistics) we could
not ask participants for more than 45 minutes per condition.

ted agents against the same hand-coded opponent against
whom they trained. During each session, participants were
able to test the quality of their designed agent at any time.
This was done using the same procedure used in Section
[£I1] Namely, by running the testing procedure the de-
signed agent was trained for 1,000 games. After each batch
of 50 games, the learning was halted and 10,000 test games
were played during which no learning occurred. The win-
ning ratio for these 10,000 test games was presented to the
designer after each batch. Given a ‘reasonable’ number of
updates per step, the procedure does not consume more than
a few seconds on a standard PC.

After all agents were submitted, we analyzed the submit-
ted agents using the same procedure used in Section [£I.1]
Namely, each agent received two scores: one for its average
performance of during its learning period and one for the
asymptotic performance of the agent, i.e., its performance
after the training completed.

In order to allow designers to compare their agents success
to a basic Q-learning agent (the benchmark agent they were
requested outperform), each designer was presented with a
report on a basic ()-learning that was trained and tested
prior to the experiment using the same procedure described
above.

4.2.2 Results

In the QS-learning condition, participants defined similar-
ity functions. A similarity function is considered beneficial
if it helps a @QS-learning agent fulfill her task — outperform-
ing basic Q-learning. Otherwise, we say that the similar-
ity function is flawed (since @Q-learning is a private case of
Q) S-learning, see Proposition . Namely, flawed similarity
functions introduce similarities that are far from correct in
hindsight, and thus hinder the agent’s learning.

When analyzing the average performance of the submit-
ted agents, we see that out of the 16 ()S-learning submitted
agents, 12 (75%) successfully defined a beneficial similar-
ity function. However, only 3 (19%) of the QA-learning
agents outperformed Q-learning. The average winning ra-
tio recorded for the @S-learning agents along their training
was 68.2% compared to the 42.7% averaged by the QA-
learning agent and 60.8% averaged by the benchmark Q-
learning agent.

Asymptotically, 13 out of the 16 QS-learning agents (81%)
asymptotically outperformed or matched the basic Q-learning
performance. None of the QA-learning agents asymptoti-
cally outperformed @-learning. On average, under the @S-
learning condition, participants designed agents that asymp-
totically achieves an average winning ratio of 74.5%. The
QA-learning condition which achieved 47.7% and 72.5% of
the benchmark Q-learning agent.

The QS-learning agents’ advantage over the QQ A-learning
agents is increased when each (QS-learning agent is ana-
lyzed with respect to its designer’s () A-learning agent. In-
terestingly, all 16 participants submitted QS-learning agents
which perform better than their submitted () A-learning agents
both in their terms of average learning performance and
asymptotic performance. Furthermore, for all participants,
the @S-learning agent outperforms the QQA-learning agent
from the 37¢ test (the 150" game) onwards. For 9 of the
16 participants (56%), the QS-learning agent outperformed
the QA-learning agent from the first test onwards.

We further analyzed the types of similarities participants


http://www.biu-ai.com/RL
http://www.biu-ai.com/RL

defined under the @S-learning condition. This was done
manually by examining the participants’ codes and trying
to reverse-engineer their intentions. Fortunately, due to the
task’s simple representation and dynamics, distinguishing
between the different similarity notions was possible. It
turns out that representational and symmetry similarity no-
tions were the most prevalent among the submitted agents.
In 8 out of the 16 QS-learning agents, representational sim-
ilarities were instantiated, mainly using different variants of
the idea presented before — moving one or both the virtual
players across the grid. Symmetry similarities were used
by 7 out of the 16 participants. All 7 of these agents used
the idea of mirroring, where the state and action where mir-
rored across an imaginary horizontal line dividing the grid in
half. Some of them also defined mirroring across an imagi-
nary vertical line dividing the grid in half, with an additional
change of switching ball position between the players. While
we were able to show that each of these ideas is empirically
beneficial on its own, we did not find evidence that combin-
ing them together brings about a significant change. Tran-
sitional similarities were only defined by 2 designers. Both
designers tried to consider a more strategical approach and
defined state-action similarities according to their strategical
means. For example, moving towards the opponent while of
defense is similar regardless of the initial state. It turns out
that both provided transitional similarities were not benefi-
cial in the way they were defined.

Only 4 out of the 16 participants (25%) used more than
a single similarity notion while defining the similarity func-
tion. Interestingly, the two best performing @ S-learning
agents combined 2 notions in their similarity function. We
speculate that combining more than a single similarity no-
tion can be useful for most designers, yet in the interest of
keeping with the task’s tight time frame, participants re-
frained from exploring ‘too many different directions’ and
focused on the ones they believed to be the most promising
according to their initial tries.

Recall that 4 participants (25%) submitted flawed simi-
larity functions. Although these participants were unable
to find a beneficial similarity function, the submitted agents
were not considerably worse than the basic @-learning. The
average performance (during training) for these 4 agents was
56.9% (compared to 60.8% of the basic Q-learning) and the
average asymptotic score was 61.5% (compared to 72.5% of
the basic @-learning).

S.  CONCLUSIONS

In this paper we proposed and extensively evaluated a
novel approach for speeding up @-learning agents using the
notion of state-action similarities. Our theoretical discus-
sion and empirical evaluation shows that the use of state-
action similarities can: 1) Significantly speed up an agent’s
learning process; 2) Use inaccurate and sub-optimal simi-
larities and still provide beneficial results; 3) Accommodate
different similarity notions that can be instantiated easily
by programmers and 4) Retain the desired theoretical prop-
erties of @-learning. We hope this work will inspire other
researchers to investigate their approach in human studies
with actual programmers.

In this work we assumed a similarity function is defined by
the human designer prior to the agent’s learning. For future
work we will tackle the challenge of on-line identification of
similarities with and without a designer’s input. In addition,

we will investigate extending the proposed approach to other
RL algorithms, linear function approximation, and DeepRL.

REFERENCES

[1] D. Andre and S. J. Russell. State abstraction for
programmable reinforcement learning agents. In
AAAI/TAAI pages 119-125, 2002.

[2] B. D. Argall, S. Chernova, M. Veloso, and
B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems,
57(5):469-483, 2009.

[3] M. Benda. On optimal cooperation of knowledge
sources. Technical Report BCS-G2010-28, 1985.

[4] R. A. Bianchi, L. A. Celiberto Jr, P. E. Santos, J. P.
Matsuura, and R. L. de Mantaras. Transferring
knowledge as heuristics in reinforcement learning: A
case-based approach. Artificial Intelligence,
226:102-121, 2015.

[5] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova,
M. E. Taylor, and A. Nowé. Reinforcement learning
from demonstration through shaping. In IJCAI, pages
3352-3358, 2015.

[6] T. Brys, A. Nowé, D. Kudenko, and M. E. Taylor.
Combining multiple correlated reward and shaping
signals by measuring confidence. In AAAI pages
1687-1693, 2014.

[7] L. Busoniu, R. Babuska, B. De Schutter, and
D. Ernst. Reinforcement learning and dynamic
programming using function approximators,
volume 39. CRC press, 2010.

[8] S. Girgin, F. Polat, and R. Alhajj. Positive impact of
state similarity on reinforcement learning
performance. IEEE Transactions on Cybernetics,
37(5):1256-1270, 2007.

[9] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowé.
Expressing arbitrary reward functions as
potential-based advice. In AAAI, pages 26522658,
2015.

[10] T. Hester and P. Stone. Texplore: real-time
sample-efficient reinforcement learning for robots.
Machine learning, 90(3):385-429, 2013.

[11] N. K. Jong and P. Stone. Model-based function
approximation in reinforcement learning. In AAMAS,
page 95. ACM, 2007.

[12] S. Karakovskiy and J. Togelius. The mario Al
benchmark and competitions. IEEE Transactions on
Computational Intelligence and Al in Games,
4(1):55-67, 2012.

[13] B. R. Leffler, M. L. Littman, and T. Edmunds.
Efficient reinforcement learning with relocatable action
models. In AAAIL volume 7, pages 572-577, 2007.

[14] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In JCML, volume
157, pages 157-163, 1994.

[15] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and
E. Wild. Giving advice about preferred actions to
reinforcement learners via knowledge-based kernel
regression. In Proceedings of the National Conference
on Artificial intelligence, volume 20, page 819. Menlo
Park, CA; Cambridge, MA; London; AAAT Press;
MIT Press; 1999, 2005.



[16]

M. F. Martins and R. A. Bianchi.
Heuristically-accelerated reinforcement learning: A
comparative analysis of performance. In Conference
Towards Autonomous Robotic Systems, pages 15-27.
Springer, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature,
518(7540):529-533, 2015.

S. M. Narayanamurthy and B. Ravindran. On the
hardness of finding symmetries in markov decision
processes. In ICML, pages 688—695, 2008.

A.Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, pages
278-287, 1999.

A.Y. Ng and S. J. Russell. Algorithms for inverse
reinforcement learning. In Icml, pages 663670, 2000.
B. Peng, J. MacGlashan, R. Loftin, M. L. Littman,
D. L. Roberts, and M. E. Taylor. A need for speed:
Adapting agent action speed to improve task learning
from non-expert humans. In AAMAS, pages 957965,
2016.

C. Ribeiro and C. Szepesvari. Q-learning combined
with spreading: Convergence and results. In Procs. of
the ISRF-IEE International Conf. on Intelligent and
Cognitive Systems (Neural Networks Symposium),
pages 3236, 1996.

C. H. Ribeiro. Attentional mechanisms as a strategy
for generalisation in the g-learning algorithm. In
Proceedings of ICANN, volume 95, pages 455460,
1995.

P. Sequeira, F. S. Melo, and A. Paiva. An associative
state-space metric for learning in factored mdps. In
Portuguese Conference on Artificial Intelligence, pages
163-174. Springer, 2013.

P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu.
Keepaway soccer: From machine learning testbed to
benchmark. In I. Noda, A. Jacoff, A. Bredenfeld, and
Y. Takahashi, editors, RoboCup-2005: Robot Soccer
World Cup IX, volume 4020, pages 93—105. Springer
Verlag, Berlin, 2006.

H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova.
Learning from demonstration for shaping through
inverse reinforcement learning. In AAMAS, pages
429-437, 2016.

R. S. Sutton. Dyna, an integrated architecture for
learning, planning, and reacting. ACM SIGART
Bulletin, 2(4):160-163, 1991.

R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. MIT press, 1998.

C. Szepesvéri and M. L. Littman. A unified analysis of
value-function-based reinforcement-learning
algorithms. Neural computation, 11(8):2017-2060,
1999.

M. Tamassia, F. Zambetta, W. Raffe, F. Mueller, and
X. Li. Dynamic choice of state abstraction in

(32]

(33]

(34]

(35]

(36]

g-learning. In ECAI), 2016.

M. E. Taylor, B. Kulis, and F. Sha. Metric Learning
for Reinforcement Learning Agents. In Proceedings of
the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), May 2011.

M. E. Taylor, H. B. Suay, and S. Chernova.
Integrating reinforcement learning with human
demonstrations of varying ability. In The 10th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 617—624.
International Foundation for Autonomous Agents and
Multiagent Systems, 2011.

C. J. C. H. Watkins. Learning from delayed rewards.
PhD thesis, University of Cambridge England, 1989.
C. C. White III and D. J. White. Markov decision
processes. Furopean Journal of Operational Research,
39(1):1-16, 1989.

M. Zinkevich and T. Balch. Symmetry in markov
decision processes and its implications for single agent
and multi agent learning. In /CML, 2001.



	Introduction
	Preliminaries and Background
	The SASS Approach
	Evaluation
	Speeding-up RL
	Simple Robotic Soccer.
	Pursuit.
	Mario AI.

	Human Study
	Experimental Design
	Results


	Conclusions

